期刊文献+

Defect-related visible luminescence of ZnO nanorods annealed in oxygen ambient 被引量:5

Defect-related visible luminescence of ZnO nanorods annealed in oxygen ambient
原文传递
导出
摘要 ZnO nanorods prepared by a solution-phase method are annealed at different temperatures in oxygen ambient.The luminescence properties of the samples are investigated.In the same excitation condition,the photoluminescence(PL) spectra of all samples show an ultraviolet(UV) emission and a broad strong visible emission band.The asymmetric visible emis-sion band of annealed samples has a red-shift as the annealing temperature increasing from 200 ℃ to 600 ℃ and it can be deconvoluted into two subband emissions centered at 535 nm(green emission) and 611 nm(orange-red emission) by Gaussian-fitting analysis.Analyses of PL excitation(PLE) spectra and PL spectra at different excitation wavelengths reveal that the green emission and the orange-red emission have a uniform initial state,which can be attributed to the electron transition from Zn interstitial(Zni) to oxygen vacancy(Vo) and oxygen interstitial(Oi),respectively. ZnO nanorods prepared by a solution-phase method are annealed at different temperatures in oxygen ambient. The luminescence properties of the samples are investigated. In the same excitation condition, the photoluminescence (PL) spectra of all samples show an ultraviolet (UV) emission and a broad strong visible emission band. The asymmetric visible emission band of annealed samples has a red-shift as the annealing temperature increasing from 200 ℃ to 600℃ and it can be deconvoluted into two subband emissions centered at 535 nm (green emission) and 611 nm (orange-red emission) by Gaussian-fitting analysis. Analyses of PL excitation (PLE) spectra and PL spectra at different excitation wavelengths reveal that the green emission and the orange-red emission have a uniform initial state, which can be attributed to the electron transition from Zn interstitial (Zni) to oxygen vacancy (Vo) and oxygen interstitial (Oi), respectively.
出处 《Optoelectronics Letters》 EI 2012年第1期4-8,共5页 光电子快报(英文版)
基金 supported by the National Natural Science Foundation of China(Nos.60877029,10904109,60977035 and 60907021) the Natural Science Foundation of Tianjin(Nos.09JCYBJC01400 and 10SYSYJC28100) the Key Subject for Materials Physics and Chemistry of Tianjin the Open Foundation of Key Laboratory of Luminescence and Optical Information of Ministry of Education(Nos.2010LOI02 and 2010LOI11)
关键词 氧化锌纳米棒 退火温度 发光性能 氧气氛 缺陷 排放量 激励条件 光致发光 Electron transitions Excited states Luminescence Nanorods Oxygen Zinc Zinc oxide
  • 相关文献

参考文献28

  • 1H.B.Zeng,X.J.Xu,Y.Bando,U.Gautam,T.Y.Zhai,X.S.Fang,B.D.Liu and D.Golberg,Adv.Funct.Mater.19,3165(2009).
  • 2LI Xiang-ping,ZHANG Bao-lin,SHEN Ren-sheng,ZHANG Yuan-tao,DONG Xin and XIA Xiao-chuan,Journal of Optoelectronics.Laser20,601(2009).
  • 3J.Y.Zhuang,L.Li,X.S.Zhang,J.P.Xu and J.Wei,Opto-electronics Letters5,1(2009).
  • 4Y.H.Yang,X.Y.Chen,Y.Feng and G.W.Yang,Nano Lett.7,3879(2007).
  • 5N.W.Wang,Y.H.Yang and G.W.Yang,J.Phys.Chem.C113,15480(2009).
  • 6D.C.Look,G.C.Falow,Pakpoom Reunchan,Sukit Limpijumnong,S.B.Zhang and K.Nordlund,Phys.Rev.Lett.95,225502(2005).
  • 7F.Tuomisto,V.Ranki and K.Saarinen,Phys.Rev.Lett.91,205502(2003).
  • 8J.Y.Zhang,P.J.Li,H.Sun,X.Shen,T.S.Deng,K.T.Zhu,Q.F.Zhang and J.L.Wu,Appl.Phys.Lett.93,021116(2008).
  • 9S.Lee,S.Jeong,D.Kim,B.Park and J.Moon,Superlattices Microstruct.42,361(2007).
  • 10D.Q.Bi,F.Wu,W.J.Yue Y.Guo,W.Shen,R.X.Peng,H.Wu,X.K.Wang and M.T.Wang,J.Phys.Chem.C114,13846(2010).

同被引文献70

  • 1WANG ChunXiao1,2,ZHANG XiaoDan1,WANG DongFeng1,YANG ZhenHua1,2,JI WeiWei1,ZHANG CunShan2 & ZHAO Ying1 1 Institute of Photo-electronic Thin Film Devices and Technology of Nankai University,Key Laboratory of Photo-electronic Information Science and Technology(Nankai University),Ministry of Education,Tianjin 300071,China,2 College of Information Engineering,Hebei University of Technology,Tianjin 300130,China.Synthesis of nanostructural ZnO using hydrothermal method for dye-sensitized solar cells[J].Science China(Technological Sciences),2010,53(4):1146-1149. 被引量:8
  • 2Qiao Q,Li B,Shan C,et al. Light-emitting diodes fabrica- ted from small-sized ZnO quantum dots[J]. Materials Let- ters, 2012,74 : 104-106.
  • 3Dileep K, Panchakarla L, Balasubramanian K, et al. Elec- tron energy loss spectroscopy of ZnO nanocryStals with different oxygen vacancy concentrations [J]. Journal of Applied Physics, 2011,109(6) : 063523.
  • 4Perez-Hernandez G, Vega-Poot A, Perez-Juarez I, et al. Effect of a compact ZnO interlayer on the performance of ZnO-based dye-sensitized solar cells[J]. Solar Energy Materials and Solar Cells, 2012,100: 21-26.
  • 5Tang X,Choo E S G,Xue J,et al. Synthesis of ZnO nano- particles with tunable emission colors and their cell labe- ling applications [J]. Chemistry of Materials, 2010, 22 (11) :3383-3388.
  • 6Dhara S,Giri P. Shape evolution in one-dimensioinal ZnO nanostructures grown from ZnO nanopowder source:va- por-liquid-solid versus vapor-solid growth mechanisms [J]. Issues, 2011,10 (1) : 75.
  • 7He H, Wang Y, Zou Y. Photoluminescence property ofZnO-SiO2 composites synthesized by sol-gel method[J]. Journal of Physics D: Applied Physics, 2003,36 (23) : 2972.
  • 8Aznan N A K ,Johan M R. Quantum size effect in ZnO nan- oparticles via mechanical milling[J]. Journal of Nanoma- terials, 2012,2012 : 1-4.
  • 9van Dijken A, Meulenkamp E A, Vanmaekelbergh D, et al. The kinetics of the radiative and nonradiative proces- ses in nanocrystalline ZnO particles upon photoexcitation [J]. The Journal of Physical Chemistry B, 2000,104 (8) : 1715-1723.
  • 10DiStefano T, Eastman D. The band edge of amorphous SiC2 by photoinjection and photoconductivity measure- ments [J]. Solid State Communications, 197], 9 (24) : 2259-2261.

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部