期刊文献+

拍频激励下的冲击钻进机械系统动力学特性研究

Research on Dynamics of an Impact-progressive Mechanical System by Beat Frequency Excitation
下载PDF
导出
摘要 考虑系统的振动和钻进运动,建立了能够将高频低幅激励转化为低频高幅响应的冲击钻进机械系统的力学模型。分析了系统部件在碰撞以后出现"同步"和"非同步"运动的条件。采用了具有低频调制激励与振动系统固有频率(所期望的低频)吻合以及只用调制波正值部分激励质量块M2这两种特征的拍频运动激励,结果表明,该激励能够产生有效的冲击力,即锤击效应。给出了两种能够获得稳定钻进运动的途径。 A mathematical model of impact--progressive mechanical system accounting for the motions of vibration and progressive was developed. That can transfer a high--frequency low--ampli- tude excitation into low--frequency high--amplitude response. Conditions for synchronous and non-- synchronous motions of impact components immediately after the impact were studied. A special beat frequency kinematic excitation was used, which has two distinctive features. (~)the low--frequency modulated excitation was tuned to the natural frequency(which was the desirable low--frequency) of the vibratory system;(~)the excitation was asymmetric,i, e. only positive part of the modulated signals excited the mass M2. The results indicate that effective impact forces,i, e. hammer effect, are generated by the excitation. Two different ways to achieve a steady progression were explored.
机构地区 兰州交通大学
出处 《中国机械工程》 EI CAS CSCD 北大核心 2012年第6期708-712,共5页 China Mechanical Engineering
基金 国家自然科学基金资助项目(11172119 10972095)
关键词 非光滑系统 振动 冲击 拍频激励 non-- smooth system vibration impact beat frequency excitation
  • 相关文献

参考文献15

  • 1Benamar A.Dynamic Pile Response Using Two Pile-driving Techniques[J].Soil Dynamics and Earth-quake Engineering,2000,20:243-247.
  • 2Wiercigroch M,Neilson R D,Player M A.Material Removal Rate Prediction for Ultrasonic Drilling of Hard Materials Using Impact Oscillators Approach[J].Physics Letters A,1999,259(2):91-96.
  • 3Wiercigroch M,Krivtsov A,Wojewoda J.Dynamics of High Frequency Percussive Drilling of Hard Ma-terials[M].Wiercigroch M,de Kraker B,eds.Non-linear Dynamics and Chaos of Mechanical Systems with Discontinuities.Singapore:World Scientific,2000.
  • 4Woo K C,Rodger A A,Neilson R D,et al.Applica-tion of the Harmonic Balance Method to Ground Moling Machines Operating in Periodic Regimes[J].Chaos,Solitons and Fractals,2000,11(15):2515-2525.
  • 5Shaw S W,Holmes P J.A Periodically Forced Piece-wise Linear Oscillator[J].Journal of Sound and Vi-bration,1983,90(1):129-155.
  • 6金栋平,胡海岩.PERIODIC VIBRO-IMPACTS AND THEIR STABILITY OF A DUAL COMPONENT SYSTEM[J].Acta Mechanica Sinica,1997,13(4):366-376. 被引量:17
  • 7李群宏,陆启韶.碰振系统中的共存周期轨道[J].应用数学和力学,2003,24(3):234-244. 被引量:17
  • 8Whiston G S.Singularities in Vibro-impact Dy-namics[J].Journal of Sound and Vibration,1992,152(3):427-460.
  • 9Luo C J.Grazing and Chaos in a Periodically Forced,Piecewise Linear System[J].Journal of Vibration and Acoustics,2006,128:29-34.
  • 10Luo Guanwei,Xie Jianhua.Hopf Bifurcations of a Two-Degree-of-freedom Vibro-impact Sys-tem[J].Journal of Sound and Vibration,1998,213(3):391-408.

二级参考文献14

  • 1[1]Guckenheimer J,Holmes P.Nonlinear Oscillations,Dynamical Systems,and Bifurcations of Vector Fields[M].New York:Springer-Verlag,1986.
  • 2[2]Wigins S.Introduction to Applied Nonlinear Dynamical Systems and Chaos[M].(Reprinted).New York:Springer-Verlag,1991.
  • 3[3]Wiggins S.Global Bifurcations and Chaos,Analytical Methods[M].New York:Springer-Verlag,1988.
  • 4[4]Bazejczyk-Okolewska B,Kapitaniak T.Co-existing attractors of impact oscillator[J].Chaos,Solitons & Fractals,1998,9(8):1439-1443.
  • 5[5]Feudel U,Grebogi C,Poon L,Yorke J A.Dynamical properties of a simple mechanical system with a large number of coexisting periodic attractors[J].Chaos,Solitons & Fractals,1998,9(1/2):171-180.
  • 6[6]Whiston G S.Global dynamics of a vibro-impacting linear oscillator[J].J Sound Vib,1987,118(3):395-424.
  • 7[7]Shaw S W,Holmes P J.A periodically forced piecewise linear oscillator[J].J Sound Vib,1983,90(1):129-155.
  • 8[8]Ivanov A P.Stabilization of an impact oscillator near grazing incidence owing to resonance[J].J Sound Vib,1993,162(3):562-565.
  • 9[9]Whiston G S.Impacting under harmonic excitation[J].J Sound Vib,1979,67(2):179-186.
  • 10[10]Whiston G S.The vibro-impact response of a harmonically excited and preloaded one-dimensional linear oscillator[J].J Sound Vib,1987,115(2):303-319.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部