期刊文献+

利用自然冷源为通讯基站降温的模拟分析 被引量:7

Simulation of Cooling a Telecommunication Base Station Using Ambient Energy
下载PDF
导出
摘要 通过分析通讯基站能耗特点及环境要求,建立其环控能耗模拟模型,对典型地区的环控能耗进行模拟分析.以180、240、370 mm砖混墙体和50、75、100 mm彩钢板围护结构为例,分析通讯基站基础室温特性,研究通讯基站在不同环控温度下的空调冷负荷和围护结构的散热量,比较空调系统和空调-热虹吸管联合系统对环控能耗的影响,探讨热虹吸管换热设备的全年节能效果.结果表明,提高环控温度能有效降低空调能耗,从25℃提高到28℃,最高的节能效果达到16%.砖混围护结构的通讯基站中,180 mm厚砖混围护结构的传热系数大,有利于围护基站散热;彩钢板围护结构的通讯基站中,50 mm厚彩钢板的传热系数大,空调能耗低.与空调系统相比,空调-热虹吸管联合系统节能效果明显,最高节能率达到54.5%. Abstract : Using ambient energy to cool the telecommunication base station in the transitional seasons and winter is an effective measure, which indicates that the potential of energy saving is considerable. Based on the analysis of the energy consumption characteristics and environmental requirements, the energy consumption model is set up, and the simulation analysis is carried out under different conditions in thetypical areas. Taking the brick wall with the thicknesses of 180, 240, and 370 mm and the polystyrene sandwich panel of 50, 75, and 100 mm as an example, the room-base temperature is analyzed, the air conditioning cooling load and the building envelope heat dissipation in the whole year are simulated underdifferent environmental control temperatures, the effect of the air conditioning system coupled with a thermosyphon heat exchanger on the energy consumption of the communication base station is compared with that of the air conditioning system, and the energy saving effect of the thermosyphon heat exchanger is also discussed in different areas. Result shows that higher environmental control temperature (25 -28℃ ) can effectively reduce energy consumption, and the best results can reach 16%. Simulation resuhs show that the envelope material affects the air conditioning cooling load much. For brick material with the envelope of 180 mm in thickness performs better with larger heat transfer coefficient and is propitious todissipate the heat of the base station. For polystyrene sandwich panel material with the envelope of 50 mm in thickness performs better. Compared with the air conditioning system, the air conditioning system coupled with the thermosyphon heat exchanger obviously saves energy with the rate of 54.5%.
出处 《北京工业大学学报》 EI CAS CSCD 北大核心 2012年第3期410-416,共7页 Journal of Beijing University of Technology
基金 国家自然科学基金资助项目(51076003) 教育部高等学校博士学科点专项科研基金资助项目(200800050010)
关键词 通讯基站 自然冷源 节能分析 热虹吸管 telecommunication base station ambient energy energy saving building envelope
  • 相关文献

参考文献9

  • 1刘涛.移动通信基站的综合节能[J].电信工程技术与标准化,2006,19(6):32-34. 被引量:18
  • 2魏巍,刘京,赵加宁.电信基站用新风冷却换热装置的开发应用研究[J].电信工程技术与标准化,2005,18(5):14-17. 被引量:4
  • 3CHEN Y, ZHANG Y F, MENG Q L. Study of ventilation cooling technology for telecommunication base stations in Guangzhou[ J ]. Energy and Buildings, 2009, 41 (7) : 738-744.
  • 4CHO J, LIM T, KIM B S. Cooling systems for IT environment heat removal in (internet) data centers [ J ]. Journal of Asian Architecture and Building Engineering, 2008, 7(2) : 387-394.
  • 5WANG J G, KANG L G, DU M X, et al. Feasibility analysis using natural source cooling the IDC plant [ C ] // Chinese Control and Decision Conference. Guilin, Guangxi, China: IEEE, 2009: 2579-2584.
  • 6郭端晓,刘国胜,袁祎.通信机房空调节能探讨[J].机械制造与自动化,2008,37(4):166-168. 被引量:12
  • 7SCHMIDT R R, SHAUKATULLAH H. Computer and telecommunications equipment room cooling: a review of literature[ J]. Transactions on Components and Packaging Technologies, 2003, 26( 1 ) : 89-98.
  • 8江亿,魏庆芄,李震,等.移动通信基站环境控制及节能研究[EB/OL].北京:中国通讯运维网,2008[2010-03-15].http://www.comcw.cn/jieneng/2007jienengzs/2008.01.08/1199771611d78941.sbtml.
  • 9张亚杰,尹纲领,李永安.基于DeST-h软件的城市住宅基础室温分析[J].山西建筑,2009,35(3):25-26. 被引量:4

二级参考文献4

共引文献33

同被引文献44

  • 1张登春,翁培奋.载人列车车厢内空气流场温度场数值模拟[J].计算力学学报,2007,24(6):904-910. 被引量:19
  • 2工信部运行监测协渊局.2014年我国通信业经济运行状况分析[EB/OL].(2015-01-21)[2015-05-20].http://www.cnii.corn.cn/wlkb/rmydb/content/2015-01/21/content_1520113.htm.
  • 3C Yi, Z Yufeng, M Qinling. Study of ventilation cooling technology for telecommunication base stations: Control strategy and application strategy[J]. Energy and Buildings, 2012,50: 212-218.
  • 4G Xuefeng, M Ali. A new methodology for building energy performance benchmarking: an approach based on intelligent clustering algorithm[J]. Energy and Buildings, 2014,84:607-616.
  • 5H Sung-Min, P Greig, B Esfandiar. A comparative study of benchmarking approaches for non-domestic buildings: Part 1-top-down approach[J]. International Journal of Sustainable Built Environment, 2013,2(2): 119-130.
  • 6B Esfandiar, H Sung-Min, P Greig. A comparative study of benchmarking approaches for non-domestic buildings: Part 1-bottom-up approach[J]. International Journal of Sustainable Built Environment, 2014,3(2): 247-261.
  • 7H Mohammad, D Matthew, M Scan, et al. Cluster analysis of simulated energy use for LEED certified U.S. office buildings[J]. Energy and Buildings, 2014,85: 86-97.
  • 8P Siriwarin, C Supachart, R Pattana. Assessment of potential energy saving using cluster analysis: A case study of lighting systems in buildings[J]. Energy and Buildings, 2012,52: 145-152.
  • 9H Linjun, S Wenxing, W Baolong, et al. Energy consumption model of integrated air conditioner with thermosyphon in mobile phone base station[J]. International Journal of Refrigeration, 2014,40: 1-10.
  • 10M Caroline. Generating low-cost national energy benchmarks: A case study incommercial buildings in Cape Town, South Africa[J]. Energy and Buildings, 2013,64: 26-31.

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部