期刊文献+

一类广义univex条件下的多目标规划 被引量:1

Multiobjective Programming Under a Class of Generalized Univexity
下载PDF
导出
摘要 引入了一种新的广义不变凸函数,即d-ρηθ-univex函数,讨论了这一概念与d-不变凸函数、d-univex函数、d-ρηθ-不变凸函数之间的关系,并在d-ρηθ-univex条件下考察一类多目标规划问题(P).首先给出问题(P)的弱Pareto有效解存在的充分条件;进而得到问题(P)的Mond-Weir型对偶的弱对偶、强对偶和逆对偶结论以及问题(P)的广义Mond-Weir型对偶的弱对偶和强对偶论断. This paper introduces a new class of generalized invex function called d-pηθ-univex function,and discusses the relationship among d-invex, d-univex, d-pηθ-invex, and d-pηθ-univex functions.Under d-pηθ-univexity assumption, one type of multiobjective programming problem (P) is considered.The sufficient optimality conditions for the existence of the weak Pareto efficient solution of the problem(P) are first established. The results on the weak, strong and converse duality of Mond-Weir typeduality, and the weak and strong duality assertions of the generalized Mond-Weir type duality of the problem (P) are then obtained.
出处 《北京工业大学学报》 EI CAS CSCD 北大核心 2012年第3期467-472,共6页 Journal of Beijing University of Technology
基金 国家自然科学基金资助项目(11006014201101) 北京工业大学自然科学基础研究资助项目(JX006790201001)
关键词 d-ρηθ-univex函数 多目标规划 Pareto有效解 MOND-WEIR对偶 广义Mond-Weir对偶 d-pηθ-univex function multiobjective programming Pareto efficient solution Mond-Weirduality generalized Mond-Weir duality
  • 相关文献

参考文献8

  • 1HANSON M A. On sufficiency of Kuhn-Tucker conditions [J]. J Math AnalAppl, 1981, 80(2): 545-550.
  • 2YE Y L. d-invexity and optimality conditions [J]. J Math Anal Appl, 199l, 162(1) : 242-249.
  • 3ZALMAI G J. Generalized sufficiency criteria in continuous-time programming with application to a class of variational-type inequalities [ J ]. J Math Anal Appl, 1990, 153(2): 331-355.
  • 4ANTCZAK T. Multiobjective programming under d-invexity [J]. EurJ Oper Res, 2002, 137(1): 28-36.
  • 5MISHRA S K, WANG S Y, LAI K K. Nondifferentiable multiobjective programming under generalized d-univexity [J]. EurJOperRes, 2005, 160(1): 218-226.
  • 6NAHAK C, MOHAPATRA R N. d-p-( η,θ)-invexity in muhiobjective optimization[ J ]. Nonlinear Analysis TMA, 2009, 70(6) : 2288-2296.
  • 7WEIR T, MOND B. Pre-invex functions in muhiple objective optimization [J]. J Math Anal Appl, 1988, 136 (1) : 29-38.
  • 8MISHRA S K, WANG S Y, LAI K K. Optimality and duality for multiple-objective optimization under generalized type I univexity[ J]. J Math Anal Appl, 2005, 303 (1): 315-326.

同被引文献14

  • 1HANSON M A.On sufficiency of Kuhn-Tucker conditions[J].J Math Anal Appl,1981,80(2):545-550.
  • 2YE Y L.d-invexity and optimality conditions[J].J Math Anal Appl,1991,162(2):242-249.
  • 3ZALMAI G J.Generalized sufficiency criteria incontinuous-time programming with application to a class of variational-type inequalities[J].J Math Anal Appl,1990,153(3):331-355.
  • 4ANTCZAK T.Multiobjective programming under d-invexity[J].Eur J Oper Res,2002,137(1):28-36.
  • 5MISHRA S K,WANG S Y,LAI K K.Nondifferentiable multiobjective programming under generalized d-univexity[J].Eur J Oper Res,2005,160(1):218-226.
  • 6NAHAK C,MOHAPATRA R N.d-ρ-(rη,θ)-invexity in muhiobjective optimization[J].Nonlinear Anal,2009,70(6):2288-2296.
  • 7MISHRA S K,WANG S Y,LAI K K.Optimality and duality for multiple-objective optimization under generalized type I univexity[J].J Math Anal Appl,2005,303(1):315-326.
  • 8ZHANG X H,CHENG C Z.Some Farkas-type results for fractional programming problems with DC functions[J].Nonlinear Anal,2009,10(3):1679-1690.
  • 9ANTCZAK T.(p,r)-Invex sets and functions[J].J Math Anal Appl,2001,263(2):355-379.
  • 10ANTCZAK T.On (p,r)-invexity-type nonlinear programming problems[J].J Math Anal Appl,2001,264(2):382-397.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部