期刊文献+

关于极小无限表示型的incidence代数 被引量:1

Minimal Representation-infinite Incidence Algebras
下载PDF
导出
摘要 设k是一个代数闭域,A是一个有限维k-代数,利用quiver方法给出了极小无限表示型incidence代数的分类并讨论了它的单连通性. Let k be an algebraically closed field, and A be a finite dimensional algebra. This paper classifies minimal-infinite representation incidence algebras and discusses its simple connectedness with the quiver method.
出处 《北京工业大学学报》 EI CAS CSCD 北大核心 2012年第3期476-480,共5页 Journal of Beijing University of Technology
基金 国家自然科学基金资助项目(10971172) 北京市自然科学基金资助项目(1092002)
关键词 路代数 incidence代数 表示型 path algebras incidence algebras representation type
  • 相关文献

参考文献11

  • 1BAUTISTA R, GABRIEL P, ROITER A V, et al. Representation-finite algebras and multiplicative bases[ J ]. Inventiones Mathematicae, 1985, 81 (2) : 217-285.
  • 2DROZD YU A. Tame and wild matrix problem [ M ]// Lecture Notes in Mathematics. Berlin: Springer-Verlag, 1980: 242-258.
  • 3HAPPEL D, VOSSIECK D. Minimal algebras of infinite representation type with preprojective component [ J ]. Manuscripta Mathematica, 1983, 42 ( 2/3 ) : 221 -243.
  • 4BONGARTZ K. Critical simply connected algebras [ J ]. Manuscripta Matheniatica, 1984, 46( 1/2/3 ) : 117-136.
  • 5BONGARTZ K, GABRIEL P. Covering spaces in representation theory [ J ]. Inventioncs Mathematicae, 1982, 65(3) : 331-378.
  • 6ASSEM I. Simply connected algebras[J]. Resenhas IME- USP, 1999, 4(2) : 93-125.
  • 7BAUTISTA R, LARRION F, SALMERON L. On simply connected algebras [ J ]. Journal of the London Mathematical Society, 1983, 27 ( 2 ) : 212-220.
  • 8BUCHWEITZ Ragnar-olaf, LIU Shi-ping. Hochschild cohomology and representation-finite algebras [ J ]. Proceedings of the London Mathematical Society, 2004, 88 (2) : 355-380.
  • 9ASSEM I, PLATZECK M I, REDONDO M J, etal. Simply connected incidence algebras [ J ]. Discrete Mathematics, 2003, 269 ( 1/2/3 ) : 333-355.
  • 10AUSLANDER M, REITEN I, SMALφ S O. Representation theory of artin algebras [ M ]. Cambridge: Cambridge University Press, 1995: 49-312.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部