摘要
针对非局部均值滤波算法中难以找到一个全局最优的滤波参数h的问题,给出一种新的该参数的优化方法,并将其应用于传统非局部均值滤波算法的改进。首先基于SUSAN算法提取噪声图像的边缘信息,然后在大量实验的基础上,利用线性回归和非线性回归分析方法建立h与边缘信息、噪声方差之间的优化模型。最后,将基于该优化模型的非局部均值算法应用于多幅图像的去噪处理中。实验结果表明,新算法改善了传统非局部均值算法的去噪性能,取得了良好的滤波效果。
Aiming at the difficulty of finding a global optimum filtering parameter h on non-local mean filtering algorithm,a novel method of optimisation of parameter h is presented and is applied to the improvement of non-local mean algorithm.First,the edge information of noise image is extracted based on SUAN algorithm.Then,on the basis of lots of experiments,the optimum model of h in relation with edge information and noise variance is set up by linear regression and nonlinear regression analysis methods.Finally,several noise images are processed by non-local mean algorithm based on this optimum parameter model.The experimental results show that the proposed algorithm improves the denoising performance of traditional non-local mean algorithm and a good filtering effect is obtained.
出处
《计算机应用与软件》
CSCD
北大核心
2012年第3期78-81,138,共5页
Computer Applications and Software
基金
国家自然科学基金项目(61071192)
国家重点基础研究发展计划资助项目(2010CB732503)
山西省自然科学基金项目(2009011020-2)
关键词
边缘信息
非局部均值滤波
图像去噪
优化参数
回归分析
Edge information Non-local mean filtering Image denoising Optimum parameter Regression analysis