期刊文献+

孔压增长后的饱和砂土流体特性及其孔压相关性 被引量:9

Fluid characteristics dependent on excess pore water pressure of saturated sand after growth of pore pressure
下载PDF
导出
摘要 设计并完成了可液化饱和南京细砂自由场地基振动台试验。利用不同埋深处量测的加速度反应时程,采用线性插值法通过换算得到模型地基土剪应力和剪应变。进一步基于流体力学方法,研究了饱和砂土在孔压增长过程中表观动力黏度的变化规律。试验结果表明,在正弦波荷载作用下,饱和砂土液化前的表观动力黏度随着剪应变和剪应变率的增大而减小,表现出典型的"剪切稀化"非牛顿流体特性;超孔压比在饱和砂土的表观动力黏度发展变化中起着显著作用,表观动力黏度随着超孔压比的增大而减小,并且利用幂函数可以很好的拟合表观动力黏度与超孔压比的关系曲线。此外,表观动力黏度与孔压比的关系似乎不依赖有效上覆压力,该结论有待进一步验证。 Shaking table model tests on free ground consisting of saturated liquefiable Nanjing fine sand are designed and accomplished.According to the acceleration response measured at different depths,the shear stress and strain of the model soils are obtained using the linear interpolation method conversion.Furthermore,based on the principles of fluid mechanics,the evolution characteristics of dynamic apparent viscosity of the saturated sand during the build-up of the pore water pressure are studied.The test results show that the dynamic apparent viscosity decreases with the growth of shear strain as well as the increase of shear strain rate during the sinusoidal wave excitations.In addition,a typical shear-thinning non-Newtonian fluid feature is discovered.Moreover,the excess pore pressure ratio plays a significant role in the development and change of apparent dynamic viscosity of saturated sand,and the apparent dynamic viscosity decreases as the excess pore pressure ratio increases;besides,the relationship curve of the apparent dynamic viscosity and pore pressure ratio can be well fitted using the power function.Additionally,the relationship curve of the apparent dynamic viscosity and pore pressure ratio might not be dependent on the effective overburden pressure.However,this conclusion needs further verification.
出处 《岩土工程学报》 EI CAS CSCD 北大核心 2012年第3期528-533,共6页 Chinese Journal of Geotechnical Engineering
基金 国家自然科学基金重大研究计划项目(90715018) 国家自然科学基金项目(50908114 51079067)
关键词 饱和砂土 流体 超孔压比 表观动力黏度 剪应变率 saturated sand fluid excess pore water pressure ratio apparent dynamic viscosity shear strain rate
  • 相关文献

参考文献12

  • 1TOWHATA I,SASSAKI Y,TOKIDA K,et al.Prediction ofpermanent displacement of liquefied ground by means ofminimum energy principle[J].Soils and Foundations,1992,32(3):97-116.
  • 2HAMADA M.,WAKAMATSU K.A study on grounddisplacement caused by soil liquefaction[J].Journal ofGeotechnical Engineering,1998,III-43(596):189-208.
  • 3DUNGCA J R,KUWANO J,SARUWATARI T.Shaking tabletests on the lateral response of a pile buried in liquefied sand[C]//Proceedings of 11th International Conference on SoilDynamics and Earthquake Engineering.Berkeley,California,2004:471-477.
  • 4HUWANG J I,KIM C Y,CHUNG C K.Viscous fluidcharacteristics of liquefied soils and behavior of pilessubjected to flow of liquefied soils[J].Soil Dynamics andEarthquake Engineering,2006,26(2/4):313-323.
  • 5陈懋章.黏性流体动力学基础[M].北京:高等教育出版社,2004.
  • 6MIYAJ I M,KITAURA M,KOIKE T.Experimental study oncharacteristics of liquefied ground flow[C]//Proceedings of1st International Conference on Earthquake GeotechnicalEngineering.Rotterdam:A.A.Balkema,1995:969-974.
  • 7TOWHATA I,Vargas-Monge,ORENSE R P.Shaking tabletests on subgrade reaction of pipe embedded in sandyliquefied subsoil[J].Soil Dynamics and EarthquakeEngineering,1999,18(5):347-361.
  • 8SAWICKI A,MIERCZYNSKI J.On the behavior of liquefiedsoil[J].Computers and Geotechnics,2009,36(4):531-536.
  • 9陈育民,刘汉龙,周云东.液化及液化后砂土的流动特性分析[J].岩土工程学报,2006,28(9):1139-1143. 被引量:53
  • 10KOGA Y,MATSUO O.Shaking table tests of embankmentsresting on liquefaction sandy ground[J].Soils andFoundations,1990,30(4):162-174.

二级参考文献27

  • 1孟上九,刘汉龙,袁晓铭,刘添华.可液化地基上建筑物不均匀震陷机制的振动台试验研究[J].岩石力学与工程学报,2005,24(11):1978-1985. 被引量:19
  • 2冯士伦,王建华,郭金童.液化土层中桩基抗震性能振动台试验研究[J].土木工程学报,2005,38(7):92-95. 被引量:19
  • 3凌贤长,郭明珠,王东升,王臣,王丽霞,王志强.液化场地桩基桥梁震害响应大型振动台模型试验研究[J].岩土力学,2006,27(1):7-10. 被引量:51
  • 4M. Zeghal,P. V. Kallou,C. Oskay,T. Abdoun,M. K. Sharp.Identification and imaging of soil and soil-pile deformation in the presence of liquefaction[J].Earthquake Engineering and Engineering Vibration,2006,5(2):171-182. 被引量:5
  • 5Abdel-Ghaffar A M,Scott R F.Shear meduli and damping factors of earth dam[J].Journal of Geotechnical Engineering Division:ASCE,1979,105(12):1405.
  • 6Zeghal M,Elgamal A W.Analysis of site liquefaction using earthquake records[J].Journal of Geotechnical Engineering Division:ASCE,1994,120(6):996.
  • 7Tamura S,Suzuki Y,Tsuchiya T,et al.Dynamic response and failure mechanisms of a pile foundation during soil liquefaction by shaking table test with a large-scale laminar shear box[C] //12th World Conference on Earthquake Engineering.Auckland:[s.n.].2000.
  • 8Kagawa T,Minowa C,Abe A.EDUS project (earthquake damage to underground structures)[C] // 12th World Conference on Earthquake Engineering.Auckland:[s.n.] ,2000.
  • 9Suzuki H,Tokimatsu K,Sato M,et al.Soil-pile-structure interaction in liquefiable ground through multi-dimensional shaking table tests using E-defense facility[C] //14th World Conference on Earthquake Engineering.Beijing:[s.n.] ,2008.
  • 10Koga Y,Matsuo O.Shaking table testa of embankments resting on liquefiable sandy ground[J].Soils Found,1990,30:162.

共引文献59

同被引文献58

引证文献9

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部