期刊文献+

单壁碳纳米管中受限水的热容及饱和含水量 被引量:1

Heat Capacity of Confined Water and Maximum Water Content of Single-Walled Carbon Nanotubes
下载PDF
导出
摘要 单壁碳纳米管纳米级的管径使其成为一种准一维的容器.用示差扫描量热的方法对受限于单壁碳纳米管中水的热容进行研究,结果显示,受限水的热容-温度曲线在所测量的温度范围内并未出现熔融峰,并且相比于同温度下的本体水,单壁碳纳米管中受限水的热容有反常的降低.红外光谱显示,单壁碳纳米管内水的氢键强度相对本体水变弱.结合红外结果可知,受限水热容反常降低的现象是因为氢键强度的下降,导致构象对热容的贡献减少.通过对溢出部分水的焓值计算可知,单壁碳纳米管内受限水含量质量分数上限为16,%.简化模型预测的单壁碳纳米管理论含水量比实际含水量质量分数高出2%左右. A single-walled carbon nanotube can be regarded as quasi one-dimension container owing to its nanoscale diameter. The specific heat capacities of water confined in single-walled carbon nanotubes were calculated with differ- ential scanning calorimeter. The results showed that the confined water presented no melting peak in the heat capacity plot, and had an anomalous lower heat capacity than that of bulk water at the same temperature. Fourier transform infrared spectroscopy results showed the hydrogen bonding in confined water was weaker than that of the bulk water. The anomalous lower heat capacity could be ascribed to the weakening of the hydrogen bonding, which induced the decrease of the configurational contribution. An approximate 16% maximum water mass fraction of single-walled carbon nanotubes was obtained through enthalpy calculation. A simplified model predicted a 2% higher maximum water mass fraction of single-walled carbon nanotubes, indicating that the model was successful to a certain extent.
出处 《天津大学学报》 EI CAS CSCD 北大核心 2012年第3期263-267,共5页 Journal of Tianjin University(Science and Technology)
基金 天津大学-天津市青年教师留学回国人员启动基金资助项目
关键词 单壁碳纳米管 受限水 热容 氢键 single-walled carbon nanotubes confined water heat capacity hydrogen bonding
  • 相关文献

参考文献18

  • 1Ye Y,Ahn C C,Witham C,et al.Hydrogen adsorp-tion and cohesive energy of single-walled carbon nano-tubes[J].Appl Phys Lett,1999,74(16):2307-2309.
  • 2Chen P,Wu X,Lin J,et al.High H2uptake by alkali-doped carbon nanotubes under ambient pressure andmoderate temperatures[J].Science,1999,285(5424):91-93.
  • 3Ugarte D,Chatelain A,de Heer W A.nanocapillarityand chemistry in carbon nanotubes[J].Science,1996,274(5494):1897-1899.
  • 4Liu Y C,Wang Q,Wu T,et al.Fluid structure andtransport properties of water inside carbon nanotubes[J].J Chem Phys,2005,123(23):234701.
  • 5Mashl R J,Joseph S,Aluru N R,et al.Anomalouslyimmobilized water:A new water phase induced by con-finement in nanotubes[J].Nano Lett,2003,3(5):589-592.
  • 6Koga K,Gao G T,Tanaka H,et al.Formation of or-dered ice nanotubes inside carbon nanotubes[J].Nature,2001,412:802-805.
  • 7Gordillo M C,MartíJ.Hydrogen bond structure of liq-uid water confined in nanotubes[J].Chem Phys Lett,2000,329(5/6):341-345.
  • 8Hanasaki I,Nakatani A.Hydrogen bond dynamics andmicroscopic structure of confined water inside carbonnanotubes[J].J Chem Phys,2006,124(17):174714.
  • 9Striolo A.The mechanism of water diffusion in narrowcarbon nanotubes[J].Nano Lett,2006,6(4):633-639.
  • 10Wang J,Zhu Y,Zhou J,et al.Diameter and helicityeffects on static properties of water molecules confined incarbon nanotubes[J].Phys Chem Chem Phys,2004,6(4):829-835.

二级参考文献9

  • 1IIJIMA S. Helical microtubules of graphitic carbon[ J]. Nature, 1991,354:56 -58.
  • 2NVOSELOV K S, GEIM A G, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[ J ]. Science ,2004,666:306 .
  • 3NOVOSELOV K S, et al. Two - dimensional atomic crystals[ J]. PNAS,2005,102 (30) : 10451 - 10453.
  • 4KOHN W, SHAM L J. Self- consistent equations including exchange and correlation effects [ J ]. Phys Rev, 1965,140 (4A) : 133 -138.
  • 5AVOURIS P, CHEN Z, PEREBEINOS V. Carbon - based electronics [ J ]. Nature Nano - technology, 2007,2:605 - 615.
  • 6TWORZYDLO J, TITOV M, RGCETZ A, et al. Sub- poissonian shot noise in graphene [ J]. Phys Rev Lett,2006,246802:26.
  • 7M INTMIRE J W, DUNLAP B I, WHITE C T. Are fullerene tubules metallic [ J ]. Phys Rev Lett, 1992,68 (5) :631 -634.
  • 8BLASE X, BENEDICT L X, SHIRLEY E L, et al. Hybridization effects and metallicity in small radius carbon nanotubes [ J ]. Phys Rev Lett, 1994, 72(12) :1878 - 1881.
  • 9郭良,王利光.单壁碳纳米管能隙的密度泛函研究[J].微纳电子技术,2008,45(1):20-24. 被引量:3

共引文献2

同被引文献18

  • 1Wang L, Bao J, Wang L, et al. One-pot synthesis and bioapplication of amine-functionalized magnetite nanoparticles and hollow nanospheres [J]. Chemistry European Journal, 2006, 12 (24) : 6341-6347.
  • 2Liu Z L, Yang X B, Yao K L, et al. Preparation and characterization of magnetic P (St-co-MAA-co- AM) microspheres [J]. Journal of Magnetism and Mag- neticMaterials, 2006, 302(2): 529-535.
  • 3Liu Z L, Ding Z H, Yao K L, et al. Preparation and characterization of polymer-coated core-shell structured magnetic microbeads[J]. Journal of Magnetism and Magnetic Materials, 2003, 265(1): 98-105.
  • 4Akg51 S, Denizli A. Novel metal-chelate affinity sor- bents for reversible use in catalase adsorption [J]. Journal of Molecular Catalysis B: Enzymatic, 2004, 28(1): 7-14.
  • 5Tseng J Y, Chang C Y, Chen Y H, et al. Synthesis of micro-size magnetic polymer adsorbent and its appliea- tion for the removal of Cu ( I1 ) ion [J]. Colloids and Sur- face .4: Physicochemical and Engineering .4spects, 2007, 295(1/2/3): 209-216.
  • 6Zhao Y G, Shen H Y, Hu M Q, et al. Synthesis of NH2-functionalized nano-Fe304 magnetic polymer ad- sorbent and its application for the removal of Cr (VI) from industrial wastewater[J]. Advanced Materials Research: Multi-Functional Materials and Structures II , 2009, 79/80/81/82: 1883-1886.
  • 7Mak S Y, Chen D H. Binding and sulfonation of poly (acrylic acid) on iron oxide nanoparticles: A novel, magnetic , strong acid cation nano-adsorbent [J]. Macromolecular Rapid Communications, 2005, 26(19) : 1567-1571.
  • 8Zhou L, Li G, An T, et al. Synthesis and characteriza- tion of novel magnetic Fe304/polyurethane foam compos- ite applied to the carrier of immobilized microorganisms for wastewater treatment[J].Research on Chemical In- termediates, 2010, 36(3): 277-288.
  • 9Liu J, Zhao Z, Jiang G. Coating Fe304 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water[J]. Environmental ScienceTechnology, 2008, 42(18): 6949-6954.
  • 10Beyaz S, Tanrisever T, Kockar H, et al. Superpara- magnetic latex synthesized by a new route of emulsifier- free emulsion polymerization[J].Journal of Applied Polymer Science, 2011, 121 (4) : 2264-2272.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部