期刊文献+

Banach空间中广义线性微分方程解对参数的连续依赖性

Continuous Dependence on a Parameter of Solutions of Generalized Linear Differential Equations in Banach Space
下载PDF
导出
摘要 利用Kurzweil-Stieltjes积分理论与正则函数的性质讨论了Banach空间中广义线性微分方程解对参数的连续依赖性,所得结果是对文献[5]中已有结果的本质推广. By using Kurzweil-Stieltjes integral theory and properties of regulated functions,we have discussed the continuous dependence on a parameter of solutions of generalized linear differential equations in Banach space and presented some new results,which are essential to the generalization of the known conclusions in[5].
出处 《甘肃科学学报》 2012年第1期1-5,共5页 Journal of Gansu Sciences
基金 国家自然科学基金项目(11061031) 甘肃省"555"创新人才工程资助项目 西北师范大学科技创新工程项目
关键词 Kurzweil-Stieltjes积分 BANACH空间 广义线性微分方程 参数 连续依赖性 Kurzweil-Stieltjes integral Banach space generalized linear differential equation parameter continuous dependence
  • 相关文献

参考文献11

  • 1Kurzweil J.Generalized Ordinary Differential Equations and Continuous Dependence on a Parameter[J].Lzechoslovak Math.,1957,7:418-449.
  • 2Artstein Z.Topological Dynamics of Ordinary Different Equations and Kurzweil Equations[J].Differential Equations,1977,23:224-243.
  • 3Schwabik S,TvrdM,Vejvoda O.Differential and Integral Equations:Boundary Value Problems and Adjoints[M].Paris:Academia andD.Reidel,Praha and Dordrecht,1979.
  • 4Federson M,Schwabik S.Stability for Retarded Functional Differential Equation[J].Ukrainian Mathemmatical Journal,2008,60:107-126.
  • 5Halas Z,Tvrd M.Continuous Dependence of Solutions of Generalized Linear Ordinary Differential Equations on a Parameter[J].Func-tional Differential Equations,2009,16(2):199-213.
  • 6Schwabik S.Linear Stieltjes Integral Equations in Banach Spaces[J].Mathematica Bohemica,1999,124(4):433-457.
  • 7Monteiro G,TvrdM.On Kurzweil-Stieltjes Integral in Banach[EB].Institute of Mathematics,Acad.Sci,Czech Rep.,Preprint 236/2011[available as http://www.math.cas.cz/preprint/pre-236.pdf].
  • 8Schwabik S.Abstract Perron-Stieltjes Integral[J].Mathematica Bohemica,1996,121(4):425-447.
  • 9Schwabik S.Generalized Ordinary Differential Equations[M].Singapore:World Scientific,1992.
  • 10Taylar A.Introduction to Functional Analysis[M].New York:John Wiley and Sons Inc,1958.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部