摘要
对解非线性和超越方程f(x)=0的"牛顿类"方法xn+1=xn-f(xn)/(αf(xn)+f′(xn))作了进一步的分析,认为参数α的取值范围直接影响公式的收敛速度,从而给出了α取值的依赖性条件,并给出了加速算法和数值算例.
For the "Newton-like" method xn+1=xn-f(xn)/(αf(xn)+f′(xn)) of solving nonlinear and transcendental equation f(x)=0,a further analysis is proposed in this paper.The analysis indicates that the range of parameter α directly affects the convergence rate of the formula.Hence,the dependent conditions of α are given here.The accelerated algorithm and the numerical examples are also presented.
出处
《甘肃科学学报》
2012年第1期20-22,共3页
Journal of Gansu Sciences
关键词
牛顿类方法
迭代公式
收敛速度
Newton-like method
iterative formula
convergence rate