期刊文献+

涡扇发动机引射喷管的红外辐射特性数值研究 被引量:3

Numerical Simulation on the Infrared Radiation Characteristics of Turbofan Engine's Ejector Nozzle
下载PDF
导出
摘要 红外隐身技术对提高未来战机战场生存力具有重要意义,发动机排气系统是飞机后半球的主要红外辐射源。为了研究涡扇发动机引射喷管的红外辐射特性,结合引射喷管的CFD计算,采用离散传递法计算红外辐射强度,研究了普通引射喷管以及带5°下倾角的引射喷管后半球3~5μm以及8~14μm波段的红外辐射强度空间分布规律,并与相似尺寸的涡扇/涡喷发动机收缩喷管进行比较。结果表明:在探测角度较大时,涡扇发动机引射喷管的红外辐射强度较收缩喷管小20%左右;引射喷管结构上的非对称性导致红外辐射强度角向分布也呈现非对称性特征;8~14μm波段与3~5μm波段的红外辐射空间分布规律基本相同,但辐射能量小40%左右。 Infrared stealth is of great importance to increase the survival ability of the future aircraft.The exhaust system of the engine is the main source of infrared radiation at the tail hemisphere of the aircraft.In order to investigate the infrared radiation characteristics of the turbofan engine's ejector nozzle,combining the flow field calculation,using the discrete transfer method of infrared radiation numerical computation,the infrared radiation field characteristic of normal turbofan engine's ejector nozzle and the ejector nozzle with 5° install angle in the waveband of 3~5 μm and 8~14 μm at the tail hemisphere is researched,and compared with the turbofan/turbojet engine's convergent nozzle.The results show that the infrared radiate intensity of turbofan engine's ejector nozzle is 20% less than the convergent nozzle at high azimuth angles and the symmetry radiation field distribution of the nozzles are changed by the install angle obviously.The radiation field distribution in the waveband of 8~14 μm is the same as that of 3~5 μm,but the radiant energy is 40% less than that of 3~5 μm.
出处 《航空工程进展》 2012年第1期92-97,共6页 Advances in Aeronautical Science and Engineering
关键词 涡扇发动机 引射喷管 红外辐射特性 波段 离散传递法 turbofan engine ejector nozzle infrared radiation field characteristic waveband discrete transfer method
  • 相关文献

参考文献4

二级参考文献30

共引文献60

同被引文献45

  • 1单勇,张靖周,邵万仁,尚守堂.某型涡扇排气系统缩比模型红外辐射特性实验[J].航空动力学报,2009,24(10):2228-2234. 被引量:13
  • 2何慧姗,钱翼稷.引射喷管的气动性能和传热计算[J].北京航空航天大学学报,1996,22(4):415-420. 被引量:2
  • 3庄逢辰.液体火箭发动机喷雾燃烧的理论、模型及应用[M].长沙:国防科技大学出版社,1995.220-250.
  • 4郭霄峰.液体火箭发动机试验[M].北京:中国宇航出版社,1990.
  • 5SHANG H M, CHEN Y S, HAW P. Investigation of che-mical kinetics integration algorithms for reacting flows, AIAA 1995-0806 JR]. USA: AIAA, 1995.
  • 6LIN Z Y, ZHOU J, HUANG Y H, et al. An innovative conception for computational combustion: muhi reaction mechanisms for LRE combustion simulation, AIAA 2005-3591[R]. USA: AIAA, 2005.
  • 7NEGISHI H, KUMAKAWA A, YAMANISHI N, et al. Heat transfer simulations in liquid rocket engine subscale thrust chambers, AIAA 2008-5241[R]. USA: AIAA, 2008.
  • 8SOZER E., VAIDYANATHAN A, SEGAL C, et al. Compu- tational assessment of gaseous reacting flows in single element injector, AIAA 2009-449 [R]. USA: AIAA, 2009.
  • 9LIN J, WEST J S, WILLIAMS R W, et al. CFD code vali- dation of wall heat fluxs for a GO2/GH2 single element combustor, AIAA 2005-4524[R]. USA: AIAA, 2005.
  • 10SOZER E, HASSAN E A, YUN S, et al. Turbulence che- mistry interaction and heat transfer modeling of H2/O2 gaseous injector flows, AIAA 2010-1525 JR]. USA: AIAA, 2010.

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部