期刊文献+

基于粒子群优化的Wv-SVM燃气负荷预测 被引量:1

Wv-SVM Gas Load Forecast Based on Particle Swarm Optimization
下载PDF
导出
摘要 针对传统预测模型精度不高的问题,提出基于小波核支持向量机的复合预测模型。采用小波分析提取燃气负荷相关的特征值,通过粒子群优化算法确定小波核支持向量机的参数,利用支持向量机(SVM)解决非线性回归和时间序列问题。实验结果证明,该预测模型的预测精度比BP神经网络和传统高斯核SVM高。 Facing an uncertain,nonlinear,dynamic and complicated system,gas load forecasting generally can not get a sufficient accuracy result when using traditional forecast model.This paper proposes a wavelet v-Support Vector Machine(SVM) compound model,wavelet analysis extracting the feature of gas load,and PSO determining the parameter of Wv-SVM model,solving nonlinear regression and time series problems.Experimental results show that the proposed model outperforms the back propagation neural network and traditional Gauss SVM model.
出处 《计算机工程》 CAS CSCD 2012年第5期196-198,201,共4页 Computer Engineering
基金 上海师范大学产学研基金资助项目 上海燃气指挥系统智能化研究和开发基金资助项目(DCL200801)
关键词 支持向量机 核函数 粒子群优化 燃气负荷 小波 预测模型 Support Vector Machine(SVM) kernel function Particle Swarm Optimization(PSO) gas load wavelet forecast model
  • 相关文献

参考文献10

  • 1Berger G.World Offshore Oil,Gas Production Has Risen Steadily[J].Oil&Gas Journal,2004,102(14):30-32.
  • 2Papalexopoulos A D,Hesterberg T C.A Regression-based Approach to Short-term Load Forecasting[J].IEEE Trans.on Power Systems,1990,5(4):1535-1547.
  • 3Saab S,Badr E,Nasr G.Univariate Modeling and Forecasting of Energy Consumption:The Case of Electricity in Lebanon[J].Energy,2001,26(1):1-14.
  • 4Bakirtzis A G,Petridis V,Kiartzis S J.A Neural Network Short Term Load Forecasting Model for the Greek[J].IEEE Trans.on Power Systems,1996,11(2):858-863.
  • 5罗泽举,宋丽红,薛宇峰,朱思铭.一类基于SVM/RBF的气象模型预测系统[J].计算机工程,2006,32(21):31-32. 被引量:12
  • 6岑涌,钟萍,罗林开.基于GA-SVM的企业财务困境预测[J].计算机工程,2008,34(7):223-225. 被引量:14
  • 7Pedreira H.Estimating Temperature Profiles for Short-term Load Forecasting:Neural Networks Compared to Linear Models[J].IEE Proceedings of Generation,Transmission&Distribution,2004,151(4):543-547.
  • 8Gross G,Galiana F D.Short Term Gas Demand Forecasting[J].Proceedings of the IEEE,2005,75(12):1558-1573.
  • 9Vapnik V N.An Overview of Statistical Learning Theory[J].IEEE Trans.on Neural Networks,1999,10(5):988-999.
  • 10毛军军,朱良燕,张学友,吴涛.基于小波变换的气温趋势和分形特征分析[J].计算机工程,2010,36(2):18-20. 被引量:8

二级参考文献15

  • 1郝慧梅,任志远.近50a固阳县气候的Hurst分析[J].干旱区研究,2006,23(1):119-125. 被引量:15
  • 2严绍瑾,彭永清,张运刚.一维气温时间序列的多重分形研究[J].热带气象学报,1996,12(3):207-211. 被引量:17
  • 3李水根,吴纪桃.分形于小波[M].北京:科学出版社,2002.
  • 4Mattila E On the Hausdorff Dimension and Capacities of Intersections[J]. Mathematika, 1985, 32(1): 213-217.
  • 5Vapnik V N.Statistical Learning Theory[M].John Wiley & Son,Inc.,1998.
  • 6Platt J.Sequential Minimal Optimization:A Fast Algorithm for Training Support Vector Machines[M].Cambridge:MIT Press,1999:185-208.
  • 7Joachims T.Making Large-scale SVM Learning,Practical[M].Cambridge:MIT Press,1999:169-184.
  • 8Shin K S, Lee T S, Kim H J. An Application of Support Vector Machines in Bankruptcy Prediction Model[J]. Expert Systems with Applications, 2005, 28(1): 127-135.
  • 9Holger K Olivier C, Bernhard S. Feature Selection for Support Vector Machines by Means of Genetic Algorithms[EB/OL]. (2003-03-30). http://ieeexplore.ieee.org/ie15/8840/27974/01250182. pdf.
  • 10Vapnik V, Chapelle O. Bounds on Error Expectation for Support Vector Machines[J]. Neural Computation, 2000, 12(9): 2013-2016.

共引文献31

同被引文献12

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部