期刊文献+

基于自适应GMM的X射线图像智能检测

Intelligent Detection of X-ray Image Based on Adaptive GMM
下载PDF
导出
摘要 传统金属工业构件X射线图像检测手段主观性过强、检测效率低下。为此,提出一种基于高斯混合模型(GMM)的智能检测方法。对同一构件的图像序列进行在线学习,每一像素点由多个高斯分布分量组成。正常工作时对每一像素点用学习到的高斯分量进行模式分类,若不符合任一现有高斯分量就视为前景目标(损伤点),采用种子生长法连通损伤区域,确定整个损伤区域。实验结果表明,该方法可精确定位构件损伤部位,实现金属构件损伤的自动检测,检测效率较高。 To avoid the subjectivity and the inefficiency in traditional metal industrial component detection by means of X-ray image,an intelligent detection method based on Gaussian Mixture Model(GMM) is put forward.Image sequence of the same component is learned online,and each pixel is composed of multiple Gaussian distribution.During ordinary process,the pixels are classified to different patterns by the learned Gaussian.During ordinary process,the pixels are classified to different patterns by the learned Gaussian distribution,and the pixels not belonging to any existed Gaussian distribution are regarded as perspective objects(damage points).The overall damage region is confirmed by connecting damage sector based on seed growth method.Experimental results show the method can locate the damage position in a component accurately and automatically.Furthermore,detection efficiency is increased obviously.
作者 韩劲松
出处 《计算机工程》 CAS CSCD 2012年第5期205-207,共3页 Computer Engineering
关键词 X射线 混合高斯模型 图像序列 模型学习 图像样本 智能检测 X-ray Gaussian Mixture Model(GMM) image sequence model learning image sample intelligent detection
  • 相关文献

参考文献8

  • 1耿荣生.新千年的无损检测技术——从罗马会议看无损检测技术的发展方向[J].无损检测,2001,23(1):2-5. 被引量:60
  • 2Danm W,Rose P,Heidt H,et al.Automatic Recognition of Weld Defects in X-ray Inspection[J].British Journal of Non-destructive Testing,1987,29(3):79-82.
  • 3Eckelt B,Meyendorf N,Morgner W,et al.Use of Automatic Image Processing for Monitoring of Welding Process and Weld Inspection[C] //Proc.of the 12th World Conference on Non-destructive Testing.Amsterdam,Holland:[s.n.] ,1989.
  • 4覃伟,裴颂文,张世乐,吴百锋.基于图像边缘形态学分析的轴承质检方法[J].计算机工程,2010,36(21):262-264. 被引量:2
  • 5戴明,吴林,李岩.基于势函数法的铝合金焊缝缺陷识别[J].机器人,2001,23(S1):701-704. 被引量:2
  • 6Jain A,Dubuisson M.Segmentation of X-ray and C-Scan Images of Fiber Reinforced Composite Materials[J].Pattern Recognition,1992,25(3):257-270.
  • 7Wang Gang,Warren T.Automatic Identification of Different Types of Welding Defects in Radio Graphic Images[M].New York,USA:[s.n.] ,2002.
  • 8Stauffer C,Grimson W E L.Adaptive Background Mixture Models for Real-time Tracking[C] //Proc.of the 1999 IEEE Int’l Conf.on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,1999.

二级参考文献6

共引文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部