期刊文献+

基于Tri-training算法的构造性学习方法 被引量:3

Constructive Learning Method Based on Tri-training Algorithm
下载PDF
导出
摘要 构造性机器学习(CML)算法在训练分类器时需要大量有标记样本,而获取这些有标记样本十分困难。为此,提出一种基于Tri-training算法的构造性学习方法。根据已标记的样本,采用不同策略构造3个差异较大的初始覆盖分类网络,用于对未标记数据进行标记,再将已标记数据加入到训练样本中,调整各分类网络参数,反复进行上述过程,直至获得稳定的分类器。实验结果证明,与CML算法和基于NB分类器的半监督学习算法相比,该方法的分类准确率更高。 Constructive Machine Learning(CML) algorithm needs larger numbers of labeled examples to train a classification network, but it is difficult to obtain a mass of labeled examples. So this paper proposes a constructive learning method based on Tri-training algorithm. According to the labeled examples, it constructs three initial classification networks by using different strategies with lager differences. Unlabeled examples can be labeled by using the initial classification networks, so that the examples can be joined into the labeled examples and the parameters of the classification network can be rectified. The steps are repeated to increase the labeled samples until a steady classifier is trained. Experimental results show that the algorithm is feasible and effective than CML and semi-supervised learning algorithm based on Naive Bayes(NB) classifier.
出处 《计算机工程》 CAS CSCD 2012年第6期13-15,共3页 Computer Engineering
基金 国家“973”计划基金资助项目(2007BC311003) 国家自然科学基金资助项目(61073117) 安徽大学创新团队基金资助项目(KJTD001B)
关键词 半监督学习 构造性机器学习 Tri-training算法 覆盖 分类网络 semi-supervised learning Constructive Machine Learning(CML) Tri-training algorithm covering classification network
  • 相关文献

参考文献8

二级参考文献42

共引文献197

同被引文献35

  • 1张燕平,张铃,段震.构造性核覆盖算法在图像识别中的应用[J].中国图象图形学报(A辑),2004,9(11):1304-1308. 被引量:17
  • 2张燕平,张铃,吴涛.机器学习中的多侧面递进算法MIDA[J].电子学报,2005,33(2):327-331. 被引量:26
  • 3BLUM A, MITCHELL T. Combining labeled and unlabeled data with co-training[ C ]. Proceedings of the 11 th Annual Con- ference on Computational Learning Theory, Madison, USA : [ s. n. ], 1998:92 - 100.
  • 4ZHOU Z H, LI M. Tri-training:Exploiting unlabeled data using three classifiers[ J ]. IEEE Transactions on Knowledge and Data Engineering ,2005,17 ( 11 ) : 1529 - 1541.
  • 5ZHU X J,TIMOTHY R, RUICHEN Q, et al. Human perform semi-supervised classification too [ C ]//proceedings of the 22^nd National Conference on Artificial Intelligence. Menlo Park, Calif: AAAI Press,2007.
  • 6Zhou Dengyong,Scholkopf B,Hofmann T.Semi-supervised learning on directed graphs[J].Advances in Neural Information Processing System,2005,17:1633-1640.
  • 7Zhang Minling,Zhou Zhihua.Confident co-training with data editing[J].IEEE Transactions on Systems,Man,and Cybernetics-Part B:Cybernetics,2011,41(6):1612-1626.
  • 8Blum A,Mitchell T.Combining labeled and unlabeled data with co-training[C]//Proceedings of the 11th Annual Conference on Computational Learning Theory.Madison,USA:[s.n.],1998:92-100.
  • 9Zhou Zhihua,Li Ming.Tri-training:exploiting unlabeled data using three classifiers[J].IEEE Transactions on Knowledge and Data Engineering,2005,17(11):1529-1541.
  • 10王伦文,张铃.构造型神经网络综述[J].模式识别与人工智能,2008,21(1):49-55. 被引量:31

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部