期刊文献+

面向路网的移动对象全时态高效索引模型

Efficient Index Model of Moving Object Full-time State for Road Network
下载PDF
导出
摘要 针对现有索引模型的冗余搜索问题,考虑路网拓扑结构及交叉口转向约束条件,提出一种面向路网的移动对象全时态高效索引模型。采用添加临近路段信息的方法索引历史轨迹和实时位置信息,设计新型窗口查询算法,实现移动对象查找,并运用指数平滑法进行轨迹的预测。实验结果表明,该模型具有较好的更新及查询性能。 Aiming at the problem of current index's redundant search, this paper presents an efficient index of moving object full-time state for road network which considers conditions of network topology and intersection turning constraints. It uses the method of adding near sections information to index former trajectories and current trajectories, and designs a new window query algorithm to achieve moving objects search. It also applies the exponential smoothing method for trajectories prediction. Experimental results show it has good update and query performance.
出处 《计算机工程》 CAS CSCD 2012年第6期53-55,59,共4页 Computer Engineering
关键词 全时态 窗口查询 索引结构 路网 移动对象 full-time state window query index structure road network: movin object
  • 相关文献

参考文献7

  • 1陈敏,高学东,栾绍峻,郗玉平.基于密度的并行聚类算法[J].计算机工程,2010,36(11):8-10. 被引量:9
  • 2李光宇.基于改进的CLARANS算法在数据挖掘中的研究[J].中南林业科技大学学报,2010,30(3):142-146. 被引量:4
  • 3Ng R T, Han Jiawei. Clarans: A Method for Clustering Objects for Spatial Data Mining[J]. IEEE Transactions on Knowledge and Data Engineering, 2002, 14(5): 1003-1016.
  • 4Pakhira M K. Fast Image Segmentation Using Modified CLARA Algorithm[C]//Proc. of International Conference on Information Technology. Washington D. C., USA: IEEE Computer Society, 2008.
  • 5Han Jiawei, Micheline K. 数据挖掘概念与技术[M]. 范 明, 孟小峰, 译. 北京: 机械工业出版社, 2007: 265-266.
  • 6孙胜,王元珍.基于核的自适应K-Medoid聚类[J].计算机工程与设计,2009,30(3):674-675. 被引量:14
  • 7Bei Changda, Gray R. An Improvement of the Minimum Distortion Encoding Algorithm for Vector Quantization[J]. IEEE Transactions on Communication, 1985, 33(10): 1132-1133.

二级参考文献16

  • 1万志华,欧阳为民,张平庸.一种基于划分的动态聚类算法[J].计算机工程与设计,2005,26(1):177-179. 被引量:16
  • 2高小梅,冯云,冯兴杰.增量式K-Medoids聚类算法[J].计算机工程,2005,31(B07):181-183. 被引量:9
  • 3吕佳,熊忠阳.基于核的可能性聚类算法[J].计算机工程与设计,2006,27(13):2466-2468. 被引量:8
  • 4Scholkopf B.Statistical learning and kemel methods[Z].MSR- TR2000-23, Microsoft Research,2000.
  • 5Scholkopf B,Mika S,Burges C,et al.Input space versus feature space in kernel-based method [J]. IEEE Tran on Neural Net- works,1999,10(5):1000-1017.
  • 6Chi-yuan Yeh, Shie-jue Lee,Chih-hung Wu,et al.A hybrid kernel method for clustering [J]. WSEAS Tran On Computers, 2006,5 (10):2326-2333.
  • 7George Karypis,Eui-Hong (Sam) Han,Vipin Kumar.CHAMELEON:A hierarchical clustering algorithm using dynamic modeling[J].Computer,1999,32:68-75.
  • 8Ng Raymond T,Jiawei Han.Efficient and Effective Clustering Methods for Spatial Data Mining[C]// In:Proceedings of the 20th Very Large Databases Conference (VLDB 94),Santiago,Chile,1994:144-155.
  • 9Maulik L,Bandyopadhyay S.Genetic algorithm:based clustering technique[J].Pattern Recognition,2000,33:1455-1465.
  • 10http://www.scilab.org.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部