期刊文献+

基于分形特征序列的乳腺X线图像分类方法 被引量:2

Classification of mammography based on fractal features sequence
下载PDF
导出
摘要 目的表征乳腺图像中肿块部分纹理特征,通过纹理分析实现乳腺图像中肿块部分与正常腺体部分的分类。方法应用分形特征值表征乳腺图像纹理特征,利用多级分形特征提取法将乳腺图像分解成一系列细节图像,提取出多个分形特征值;利用分类精度、ROC曲线及曲线下面积(AUC)进行特征选择构建分形特征序列,最后应用支持向量机(SVM)方法进行分类。结果对60幅图像的可疑病变区域进行分形特征序列提取分析,SVM交叉验证分类精度达84.50%。结论基于分形维数的乳腺图像分类方法不仅能对肿块与正常腺体进行图像分类,还可有效表征乳腺图像的纹理信息,有助于提高乳腺肿块诊断的准确率。 Objective To describe the texture features of mass and implement the classification for breast mass and normal glands by texture analysis.Methods The texture features were described using fractal dimension.The detailed breast images were obtained by multi-level fractal features extraction methods of breast mass,and many features were extracted.The detectable rate,ROC curve and area under curve(AUC) were utilized to establish the fractal feature vector,and then breast images were classified using support vector machine(SVM) method.Results Sixty suspicious areas were extracted and classified,and the SVM cross-validation accuracy was 84.50%.Conclusion The breast image classification methods based on the fractal dimensions can classify the breast mass and normal gland,describe the texture features of mammograms efficiently,and improve the accuracy rate for mass detection.
出处 《中国医学影像技术》 CSCD 北大核心 2012年第3期582-586,共5页 Chinese Journal of Medical Imaging Technology
关键词 乳腺病变 计算机辅助诊断 分形维数 多级分形特征 特征选择 支持向量机 Breast diseases Computer-aided diagnosis Fractal dimension Multi-level fractal features Feature selection Support vector machine
  • 相关文献

参考文献12

  • 1王荣福.乳腺癌影像诊断技术应用进展[J].中国医学影像技术,2009,25(5):905-907. 被引量:10
  • 2Velanovich V.Fractal analysis of mammographic lesions:A pro-spective,blinded trial.Breast Cancer Res Treat,1998,49(3):245-249.
  • 3Gagalowicz A,Philips W.Automatic detection of spiculated mas-ses using fractal analysis in digital mammography//Goos G,Har-tmanis J,van Leeuwen J.Lecture notes in computer science.Ber-lin:Springer-Verlag,2005:256-263.
  • 4Rangayyan RM,Nguyen TM.Fractal analysis of contours of breast masses in mammograms.J Digit Imaging,2007,20(3):223-237.
  • 5Guo Q,Shao J,Ruiz V.Investigation of support vector machine for the detection of architectural distortion in mammographic ima-ges.J Phys,2005,15:88-94.
  • 6Guo Q,Shao J,Ruiz VF.Characterization and classification of tumor lesions using computerized fractal-based texture analysis and support vector machines in digital mammograms.Int J Com-put Assist Radiol Surg,2009,4(1):11-25.
  • 7Tourassi GD,Delong DM,Floyd Jr,et al.A study on the com-puterized fractal analysis of architectural distortion in screening mammograms.Phys Med Biol,2006,51(5):1299-1312.
  • 8Rangayyan RM,Banik S,Desautels JE,et al.Computer-aided detection of architectural distortion in prior mammograms of in-terval cancer.J Digit Imaging,2010,23(5):611-631.
  • 9万金鑫,宋余庆,董淑德,赵德坤.医学图像灰度归一化显示技术研究[J].CT理论与应用研究(中英文),2008,17(4):67-75. 被引量:3
  • 10朱浩栋,陈瑛,章鲁.医学图像灰度归一化方法研究[J].国际生物医学工程杂志,2006,29(3):148-151. 被引量:9

二级参考文献79

共引文献75

同被引文献14

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部