期刊文献+

微RNA-375的抑癌机制 被引量:5

MiR-375 in Cancers Inhibition
下载PDF
导出
摘要 微RNA-375(microRNA-375,miR-375)是最早在胰腺组织中发现的微RNA,参与胰岛的形成和发展,具有调节胰岛素分泌的功能.新近研究发现,miR-375在多种肿瘤组织(包括呼吸系统、消化系统、泌尿生殖系统、皮肤和妇科肿瘤组织)中和食管鳞状细胞癌、肝癌和胰腺癌患者外周血中明显表达异常.miR-375可通过调控多个靶基因(如:3-磷酸肌醇依赖性蛋白激酶1、14-3-3ζ、Janus激酶2、p53、丝裂原活化蛋白激酶、Wnt、血管内皮生长因子、胰岛素样生长因子-1受体、星形胶质细胞升高基因-1/异黏蛋白、地塞米松诱导的Ras相关蛋白1和特异蛋白1等相关基因),参与肿瘤的发生和发展过程.提高细胞内miR-375的水平能够抑制肿瘤细胞(如:头颈鳞癌、胃癌、食管鳞癌、黑色素瘤和乳腺癌等肿瘤细胞)的增殖和迁移.因此,具有抑癌活性的miR-375是一种有临床价值的新型肿瘤分子标志物和肿瘤靶向治疗的新靶点. Identified in pancreatic tissues,mircroRNA-375(miR-375) contributes to the formation and development of islets,as well as the regulation of insulin secretion.Recently,abnormal expression of miR-375 was also found in many tumor tissues,including cancers in respiratory,digestive and genitourinary systems,dermatological or gynecologic tissues.It was also detected in the peripheral blood of patients with esophageal squamous cell carcinoma,hepatocarcinoma and pancreatic cancers.A great variety of genes can be the miR-375 targets,such as 3-phosphoinositide-dependent protein kinase-1(PDK1),14-3-3ζ,Janus kinase 2(JAK2),tumor protein p53(TP53),mitogen-activated protein kinase(MAPK),wingless-type MMTV integration site family(Wnt) proteins,vascular endothelial growth factor(VEGF),insulin-like growth factor 1 receptor(IGF-1R),astrocyte elevated gene-1(AEG-1)/metadherin(MTDH),dexamethasone-induced Ras-related protein 1(RASD1),and specificity protein-1(SP1),etc,all of which involved in carcinogenesis,especially in digestive,head and neck cancers,and gynecologic tumors.As a potential tumor suppressor,elevated miR-375 expression was able to suppress the proliferation and migration in many cancers,therefore,may be regarded as an important tumor biomarker and therapeutic target.
出处 《中国生物化学与分子生物学报》 CAS CSCD 北大核心 2012年第3期217-221,共5页 Chinese Journal of Biochemistry and Molecular Biology
基金 国家自然科学基金(No.81171660) 浙江省公益类科研项目(No.2010C33112) 浙江省新苗人才计划(No.2011R405033) 宁波市科技创新团队项目(No.2011B82014) 宁波大学学科项目(No.XKL11D2128)~~
关键词 微RNA-375 胰腺 基因表达调控 肿瘤发生 miR-375 pancreas gene expression regulation carcinogenesis
  • 相关文献

参考文献6

二级参考文献155

  • 1Zhu, Yi-Min,Zhong, Zheng-Xiang,Liu, Zhi-Ming.Relationship between let-7a and gastric mucosa cancerization and its significance[J].World Journal of Gastroenterology,2010,16(26):3325-3329. 被引量:17
  • 2张旗,何湘君,潘秀英.RNA加尾和引物延伸RT-PCR法实时定量检测microRNA[J].北京大学学报(医学版),2007,39(1):87-91. 被引量:23
  • 3孙婷婷,张木勋,张建华,袁刚.胰岛素对3T3-L1脂肪细胞中极低密度脂蛋白受体基因表达的影响[J].中国生物化学与分子生物学报,2007,23(6):457-462. 被引量:5
  • 4Hong-He Zhang,Xian-Jun Wang,Guo-Xiong Li,En Yang,Ning-Min Yang.Detection of let-7a microRNA by real-time PCR in gastric carcinoma[J].World Journal of Gastroenterology,2007,13(20):2883-2888. 被引量:48
  • 5Hwangbo D S, Gershman B, Tu M P, et al. Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body [J]. Nature, 2004, 429(6991): 562-566.
  • 6Lawrence M C, McKern N M, Ward C W. Insulin receptor structure and its implications for the IGF-1 receptor[J]. Curr Opin Struct Biol, 2007, 17(6): 699-705.
  • 7Stoy J, Edghill E L, Flanagan S E, et al. Insulin gene mutations as a cause of permanent neonatal diabetes[ J]. Proc Natl Acad Sci U S A, 2007, 104(38): 15040-15044.
  • 8Edghill E L, Flanagan S E, Patch A M, et al. Insulin mutation screening in 1,044 patients with diabetes: mutations in the INS gene are a common cause of neonatal diabetes but a rare cause of diabetes diagnosed in childhood or adulthood [ J ]. Diabetes, 2008, 57 (4) : 1034- 1042.
  • 9Denley A, Wang C C, McNeil K A, et al. Structural and functional characteristics of the Va144Met insulin-like growth factor I missense mutation: correlation with effects on growth and development[ J ]. Mol Endocrinol, 2005, 19(3) : 711-721.
  • 10Enya M, Horikawa Y, Kuroda E, et al. Mutations in the small heterodimer partner gene increase morbidity risk in Japanese type 2 diabetes patients[J]. Hum Mutat, 2008, 29(11): E271-277.

共引文献125

同被引文献112

  • 1Thomas M, LiebermanJ, Lal A. Desperately seeking microRNA targets[J]. Nat Struct Mol Bioi, 2010, 17(10): 1169-1174.
  • 2Zhang H, Li Y, Lai M. The microRNA network and tumor metestasisJ J]. Oncogene, 2010, 29(7) :937-948.
  • 3Salmena L, Poliseno L, Tay Y, et al. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? [J]. Cell, 2011,146 (3) :353-358.
  • 4Poliseno L, Salmena L, ZhangJ, et al. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology [J]. Nature, 2010,465(7301) : 1033-1038.
  • 5Manakov SA, ZhaoJ C. Coding genesJoin the non-coding world [J]. Pigment Cell Melanoma Res, 2012, 25 (1 ) : 3 4.
  • 6Ebert M S, NeilsonJ R, Sharp P A. MicroRNA sponges: competitive inhibitors of small RN As in mammalian cells [J]. Nat Methods, 2007,4(9) :721-726.
  • 7Seitz H. Redefining microRNA targets [J]. CUIT Bioi, 2009, 19 (10) :870-873.
  • 8Arvey A, Larsson E, Sander C, et al. Target mRNA abundance dilutes microRNA and siRNA activity[J]. Mol Syst Bioi, 2010, 6:363.
  • 9Ebert M S, Sharp P A. Emerging roles for natural microRNA sponges [J]. Curr Bioi, 2010, 20 (19) : R858-861.
  • 10Franoo-ZorrillaJ M, Valli A, Todesco M, et al. Target mimicry provides a new mechanism for regulation of microRNA activity [J]. Nat Genet, 2007,39(8) :1033-1037.

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部