期刊文献+

胡杨甜菜碱醛脱氢酶基因的功能分化 被引量:5

Functional divergence of betaine aldehyde dehydrogenase genes in Populus euphratica
原文传递
导出
摘要 甜菜碱醛脱氢酶(BADH)在植物抗逆反应中发挥着重要作用。文中从胡杨cDNA克隆到2个甜菜碱醛脱氢酶基因,分别命名为PeBADH1和PeBADH2。PeBADH1和PeBADH2均编码503个氨基酸的蛋白质,预测分子量分别是54.93 kDa和54.90 kDa。组织表达模式分析发现这2个基因在正常生长、盐和H2O2胁迫下,在不同组织中的表达模式有较大差异。在大肠杆菌中表达并纯化了2个基因的重组蛋白。酶活性分析显示PeBADH1和PeBADH2蛋白对底物的活性分别是0.073μmol/(min.mg)和0.107μmol/(min.mg)。热力学稳定性分析显示这2个蛋白的热力学稳定性具有明显差异。因此,基因表达模式差异与蛋白质酶学性质的不同预示着这2个基因可能存在功能上的分化。 Plant betaine aldehyde dehydrogenase(BADH) is a physiologically important enzyme in response to salt or drought stress.In this study,two BADH genes(PeBADH1 and PeBADH2) were cloned from Populus euphratica.Both PeBADH1 and PeBADH2 genes encode the proteins of 503 amino acid residues,with a calculated molecular mass of 54.93 kDa and 54.90 kDa,respectively.Reverse transcription PCR showed the divergence of expression pattern between the PeBADH1 and PeBADH2 genes in P.euphratica.The recombinant PeBADH1 and PeBADH2 proteins were overexpressed in E.coli,and purified by Ni-affinity chromatography.The PeBADH2 protein had 1.5-fold higher enzymatic activity towards the substrate aldehyde than PeBADH1 protein.The PeBADH1 protein revealed higher thermal stability than PeBADH2 protein.These results indicated obvious functional divergence between the PeBADH1 and PeBADH2 genes.
出处 《生物工程学报》 CAS CSCD 北大核心 2012年第3期329-339,共11页 Chinese Journal of Biotechnology
基金 国家重点基础研究发展计划(973计划)(No.2009CB119104)资助~~
关键词 甜菜碱醛脱氢酶 胡杨 克隆 蛋白结构 酶活性分析 betaine aldehyde dehydrogenase Populus euphratica cloning protein structure enzyme activity
  • 相关文献

参考文献16

  • 1Rhodes D,Hanson AD.Quaternary ammonium and tertiary sulfonium compounds in higher plants.Annu Rev Plant Physiol Plant Mol Biol,1993,44:357-384.
  • 2Hanson AD,Rhodes DC.14 CTracer evidence for synthesis of choline and betaine via phosphoryl base intermediates in salinized sugarbeet leaves.Plant Physiol,1983,71(3):692-700.
  • 3Rathinasabapathi B,McCue KF,Gage DA,et al.Metabolic engineering of glycine betaine synthesis:plant betaine aldehyde dehydrogenases lacking typical transit peptides are targeted to tobacco chloroplasts where they confer betaine aldehyde resistance.Planta,1994,193(2):155-162.
  • 4Kumar S,Dhingra A,Daniell H.Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells,roots,and leaves confers enhanced salt tolerance.Plant Physiol,2004,136(1):2843-2854.
  • 5Kishitani S,Takanami T,Suzuki M,et al.Compatibility of glycinebetaine in rice plants:evaluation using transgenic rice plants with a gene for peroxisomal betaine aldehyde dehydrogenase from barley.Plant Cell Environ,2000,23(1):107-114.
  • 6罗晓丽,肖娟丽,王志安,张安红,田颖川,吴家和.菠菜甜菜碱醛脱氢酶基因在棉花中的过量表达和抗冻耐逆性分析[J].生物工程学报,2008,24(8):1464-1469. 被引量:23
  • 7Kirch HH,Bartels D,Wei YL,et al.The ALDH gene superfamily of Arabidopsis.Trends Plant Sci,2004,9(8):371-377.
  • 8Nakamura T,Yokota S,Muramoto Y,et al.Expression of a betaine aldehyde dehydrogenase gene in rice,a glycinebetaine nonaccumulator,and possible localization of its protein in peroxisomes.Plant J,1997,11(5):1115-1120.
  • 9McCue KF,Hanson AD.Salt-inducible betaine aldehyde dehydrogenase from sugar beet:cDNA cloning and expression.Plant Mol Biol,1992,18(1):111.
  • 10Weretilnyk EA,Hanson AD.Betaine aldehyde dehydrogenase from spinach leaves:purification,in vitro translation of the mRNA,and regulation by salinity.Arch Biochem Biophys,1989,271(1):56-63.

二级参考文献22

  • 1梁峥,骆爱玲.甜菜碱和甜菜碱合成酶[J].植物生理学通讯,1995,31(1):1-8. 被引量:110
  • 2刘凤华,郭岩,谷冬梅,肖岗,陈正华,陈受宜.转甜菜碱醛脱氢酶基因植物的耐盐性研究[J].Acta Genetica Sinica,1997,24(1):54-58. 被引量:119
  • 3司怀军,张宁,王蒂.转甜菜碱醛脱氢酶基因提高烟草抗旱及耐盐性[J].作物学报,2007,33(8):1335-1339. 被引量:19
  • 4Yancey PH, Clark ME, Hand SC, et al. Living with water stress: Evolution of osmolyte systems. Science, 1982, 217: 1214-1222.
  • 5Russell BL, Rathinasabapathi B, Hanson AD. Osmotic stress induces expression of choline monooxygenase in sugar beet and Amaranth. Plant Physiol, 1998, 116: 859-865.
  • 6Hanson AD, Rhodes D. ^14C Tracer evidence for synthesis of choline and betaine via phosphoryl base intermediates in salinized sugarbeet leaves. Plant Physiol, 1983, 71: 692-700.
  • 7Ishitani M, Nakamura T, Han SY, et al. Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisic acid. Plant Mol Biol, 1995, 27: 307-315.
  • 8I Sakamoto A, Murata NA. Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol Biol, 1998, 38: 1011-1019.
  • 9McNeil SD, Nuccio ML, Hanson AD. Betaines and related osmoprotectants. Targets for metabolic engineering of stress resistance. Plant Physiol, 1999, 120: 945-949.
  • 10Huang J, Hirji R, Adam L, et al. Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants metabolic limitations. Plant Physiol, 2000, 122: 747-756.

共引文献74

同被引文献88

引证文献5

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部