摘要
限制性三体问题下共线平动点附近的拟周期轨道在深空探测中具有重要的实际应用价值,得到了各航天大国的广泛重视。通过将动力学中心流形结构引入轨道控制方法的设计之中,得到了基于投影到中心流形的共线平动点拟周期轨道稳定保持策略。首先推导了会合坐标到中心流形坐标的正则变换方法,在此基础上设法通过引入轨道机动,将偏差状态点投影到中心流形上,从而达到消除不稳定分量的目的。该方法充分整合了平动点的动力学特性,并且也适用于周期轨道的稳定保持。通过对Lissajous轨道和晕轨道的数值仿真表明,该方法较以往方法具有更强的稳定性,能在显著降低轨控燃料消耗的基础上达到较好的稳定保持效果。
In circular restricted three-body problem,there exist quasi-periodic orbits in the vicinity of collinear libration points,and they play very important roles in deep space exploration.A station-keeping strategy for quasi-periodic orbits of collinear libration points is derived by making use of the center manifold dynamical structure in this paper.First,the canonical transformation from synodic coordinates to center manifold coordinates is derived.Based on this transformation,the error state can be projected to the nearest center manifold by introducing the delta V maneuver.In this way,unstable component could be canceled.This station-keeping strategy fully integrates the dynamical property of collinear libration points,and is suitable for other kinds of libration point orbits.Finally,numerical simulations are performed for Lissajous orbit and Halo orbit,verifying that this strategy can achieve better station-keeping performance and have less fuel consumption of orbit control.
出处
《宇航学报》
EI
CAS
CSCD
北大核心
2012年第3期318-324,共7页
Journal of Astronautics
基金
国家自然科学基金(60575013)
航天支撑基金(N9XW0002)
关键词
圆型限制性三体问题
共线平动点
拟周期轨道
稳定保持
中心流形
Circular restricted three-body problem
Collinear libration points
Quasi-periodic orbits
Station-keeping
Center manifolds