期刊文献+

非线性接触率SIR模型脉冲接种策略研究 被引量:1

Analysis of Sir Epidemic Model with Pulse Vaccination and Nonline Incidence
原文传递
导出
摘要 建立了具有非线性接触率脉冲预防接种的SIR传染病模型,利用脉冲微分方程理论,对模型的动力学性态进行了分析,给出了模型的阀值,证明了无病周期解的存在性及全局渐近稳定性. By means of basic theories of impulsive differential equation, we analyze the SIR epidemic model with impulsive vaccination and nonline incidence. Threshold of the model is defined. We prove the existence and global stability of the infection-free periodic solution.
出处 《数学的实践与认识》 CSCD 北大核心 2012年第5期93-97,共5页 Mathematics in Practice and Theory
关键词 非线性接触率 脉冲接种 无病周期解 稳定性 pulse vaccition nonlin incidence infection-free periods stability
  • 相关文献

参考文献7

  • 1Boris Shulgin, Lewi Stone, Zvia Agur. Puls vaccination strategy in the sir epidemic model[J]. Bulletin of Mathematical Biology, 1998(60): 1123-1148.
  • 2Alberto D'Onofrio. Pluse vaccination strategy in the sir epidemic model:globai asymptotic stable eradication in presence of vaccine failures[J]. Mathematical and Computer Modelling, 2002(36): 473-489.
  • 3Zhou Yichang, Liu Hanwu. Stability of periodic solutions for an SIS model with pulse vaccination[J]. Mathematical and Computer Modelling, 2003(38): 299-308.
  • 4Sunita Gakkhar, Kuldeep Negi. Pluse vaccination in sirs epidemic model with non-monotonic incidence rate[J]. Chaos Solitons and Fractals, 2008, 35(3): 626-638.
  • 5Gao Shujing, Chen Lansun, Juan J Nieto, Angela Torres. Analysis of a delayed epidemic model with pulse vaccination and saturation incidence[J]. Vaccine, 2006(24): 6037-6045.
  • 6Bainov D, Simeonov P. Impulsive Differential equations:Periodic Solutions and Applications[M]. New York: Longman Scientific, 1989.
  • 7Bainov D D, Domshlak Y I, Simeonov P S. On the oscillatory properties of first order impulisive differential with a deviating argument[J]. Georgian Math J, 1998(98): 167-187.

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部