摘要
建立了具有非线性接触率脉冲预防接种的SIR传染病模型,利用脉冲微分方程理论,对模型的动力学性态进行了分析,给出了模型的阀值,证明了无病周期解的存在性及全局渐近稳定性.
By means of basic theories of impulsive differential equation, we analyze the SIR epidemic model with impulsive vaccination and nonline incidence. Threshold of the model is defined. We prove the existence and global stability of the infection-free periodic solution.
出处
《数学的实践与认识》
CSCD
北大核心
2012年第5期93-97,共5页
Mathematics in Practice and Theory
关键词
非线性接触率
脉冲接种
无病周期解
稳定性
pulse vaccition
nonlin incidence
infection-free periods
stability