期刊文献+

一类非线性随机种群动力学模型的最优收获控制

An Optimal Harvesting Control Problem for Nonlinear Stochastic Population Dynamic Model
原文传递
导出
摘要 研究了一类非线性随机种群动力学模型的最优收获控制问题,得出了在外界环境对系统产生影响的条件下,最优控制所满足的必要条件及其最优性组,所得到的结论是确定性种群系统的扩展. An optimal harvesting control problem for nonlinear stochastic population dy- namic model is studidied.When the external environment impact on the system ,The necessary condition for the optimization and its optimality system was obtained,which extends a result in the deterministic population system.
出处 《数学的实践与认识》 CSCD 北大核心 2012年第5期114-119,共6页 Mathematics in Practice and Theory
基金 国家自然科学基金(11061024)
关键词 非线性随机群体动力学模型 必要条件 伴随方程 nonlinear stochastic population dynamic model necessary condition adjoint equation
  • 相关文献

参考文献8

  • 1Song J, Yu J. Population System Control[M]. New York: Springer-Verlag, 1977.
  • 2Anita S. Analysis and Conrol of Age-Dependent Population Dynamics [M]. Dordrecht : Kluwer Academic Publishers, 2000.
  • 3Barbu V, Iannelli M. Optimal control of population dynamics[J]. J Optim Theo Appl, 1999, 102(1): 1-14.
  • 4Zhao C, Wang M, Zhao P. Optimal control of harvesting for age-dependent predator-prey system[J]. Math Comput Model, 2005(42): 573-584.
  • 5李淑锦.一类非线性群体动力学模型的最优收获控制[J].山西大学学报(自然科学版),1997,20(4):368-372. 被引量:1
  • 6何泽荣,王绵森.一类非线性周期种群系统的最优收获控制[J].应用数学,2003,16(3):88-93. 被引量:10
  • 7Zhang Qimin, Han Changzhao. Numerical analysis for stochastic age-structured population equa- tions [J]. Applied Mathmatics and Computation, 2005, 176: 210-223.
  • 8Zhang Qimin, Han Changzhao. Covergence of numericalsolutions to stochastic age-structured poputionsystem with diffusion[J]. Applied Mathematics and Computation, 2006(186): 1234-1242.

二级参考文献8

  • 1李淑锦.一类非线性群体动力学模型[J].山西大学学报(自然科学版),1997,20(1):21-24. 被引量:1
  • 2Song J. Yu J. Population system control[M]. New York: Springer-Verlag. 1977.
  • 3Anita S. Analysis and control of age-dependent population dynamics[M]. Dordrecht: Kluwer Academic Publishers, 2000.
  • 4Anita S. lannelli M. Kim M Y. Park E J. Optimal harvesting for periodic age-dependent population dynamics[J]. SIAM J. Appl. Math. 1998.58 : 1648-1666.
  • 5Barbu V.lannelli M. Optimal control of population dynamics[J]. J Optim. Theo. Appl. 1999,102(1): 1-14.
  • 6Chan W L. Guo Bao Zhu. Optimal birth control of population dynamics[J]. J Math. Anal, Appl, 1989,144:532-552.
  • 7Chan W L.Bao Zhu Guo. Optimal birth control of population dynamics. Part 2. Problems with free final time. phase constraints and mini-max costs[J]. J Math. Anal. Appl, 1990,146 : 523 - 539.
  • 8Barbu V. lannelli M, Martcheva M. On the controllability of the Lotka-Mckendrick model of population dynamics[J]. J Math. Anal. Appl, 2001,253 : 142 - 165.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部