期刊文献+

关于矩形和斜带模型的反强迫数和反凯库勒数

On the Anti-Forcing Number and the Anti-Kekul Number of Rectangular and Skew Strip Models
原文传递
导出
摘要 在苯类化合物的凯库勒结构的研究中引入了反强迫数和反凯库勒数.通过分析矩形和斜带模型苯类化合物的分子图的结构,证明了具有k行l列的矩形R[k,l]和斜带模型Z[k,l]的反凯库勒数是2,R[k,l]的反强迫数是l,Z[k,l]的反强迫数不超过[(l+1)/2],其中[x]表示不超过x的最大整数. The anti-forcing number and anti-Kekule number are introduced for studying Kekule structures in a benzenoid. The calculation of these invariants is demonstrated on rectangular models and skew strip models in this paper by analyzing the structures of their graphs, and it is shown that the anti-Kekule numbers of rectangular model R[k, l] and skew strip model Z[k, l] with k rows and l columns are 2, the anti-forcing number of R[k, l] is l and the anti-forcing number of Z[k, l] is not more than [2/1+1] where [x] is the greatest integer no [2/1+1] more than x.
出处 《数学的实践与认识》 CSCD 北大核心 2012年第5期151-154,共4页 Mathematics in Practice and Theory
基金 湖南省科技厅科技计划项目(2011FJ6093) 北京市属高等学校人才强教计划(201102)
关键词 反强迫数 反凯库勒数 凯库勒结构 矩形模型 斜带模型 anti-forcing number anti-Kekule number Kekule structure rectangular model skew strip model
  • 相关文献

参考文献9

  • 1Randic M, Klein D J. Kekule valence structures revisited. Innate degrees of freedom of pi-electron couplings[C]//in: Mathematics and Computational Concepts in Chemistry, ed. N. Trinajstic (Hor- wood/Wiley, New York, 1986) 274-282.
  • 2Harary F, Klein D J, Zivkovic T P. Graphical properties of polyhexes: perfect matching vector and forcing[J]. J Math Chem, 1991(6): 295-306.
  • 3Zhang F, Li X. Hexagonal systems with forcing edges[J]. Discrete Math, 1995(140): 253-263.
  • 4Vukicevic D, Trinajstic N. On the anti-forcing number of benzenoids[J]. J Math Chem, 2007, 42(3): 575-583.
  • 5Vukicevic D, Trinajstic N. On the anti-Kekule number and anti-forcing number of cata-conderised benzenoids[J]. J Math Chem, 2008, 43(2): 719-726.
  • 6Kutnar K, Sedlar J, Vukicevic D. On the anti-Kekule number of leapfrog fullerenes[J]. J Math Chem, 2009, 45(2): 431-441.
  • 7Deng H. The anti:forcing number of hexagonal chains[J]. MATCH Commun Math Comput Chem, 2007, 58(3): 675-682.
  • 8Deng H. The anti-forcing number of double hexagonal chains[J]. MATCH Commun Math Comput Chem, 2008, 60(1): 183-192.
  • 9Trinajstic N. Chemical Graph Theory (Second Edition)[M]. CRC Press, Inc., 1992.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部