期刊文献+

分数布朗运动驱动下z一致连续的BSDE解的存在性与唯一性 被引量:4

Existence and Uniqueness of the Solution to BSDE Driven by Fractional Brownian Motion with the Generator is Uniformly Continuous in z
原文传递
导出
摘要 本文研究一类由分数布朗运动驱动的一维倒向随机微分方程解的存在性与唯一性问题,在假设其生成元满足关于y Lipschitz连续,但关于z一致连续的条件下,通过应用分数布朗运动的Tanaka公式以及拟条件期望在一定条件下满足的单调性质,得到倒向随机微分方程的解的一个不等式估计,应用Gronwall不等式得到了一个关于这类方程的解的存在性与唯一性结果,推广了一些经典结果以及生成元满足一致Lipschitz条件下的由分数布朗运动驱动的倒向随机微分方程解的结果. We study the existence and uniqueness problem of the solutions to a class of one dimensional backward stochastic differential equation driven by fractional Brownian motion. We assume the generator of theses equations satisfies the conditions,that is,the generator is Lipschitz continuous in y and uniformly continuous in z,by using the Tanaka's formula for fractional Brownian motion and the propositions of quasi-conditional expectation,particularly the monotone proposition which is satisfied only under some conditions,we obtain some inequality estimations for the solution to the backward stochastic differential equation, moreover,by using Gronwall's inequality,we obtain a result of existence and uniqueness for the solution to the backward stochastic differential equation.Our result generalizes some known result among the classical backward stochastic differential equation theory and the results which are obtained under the uniformly Lipschitz condition among the fractional Brownian motion ranges.
出处 《应用数学学报》 CSCD 北大核心 2012年第2期245-251,共7页 Acta Mathematicae Applicatae Sinica
基金 湖南省自然科学基金(09JJ3011)资助项目
关键词 倒向随机微分方程 分数布朗运动 拟条件期望 backward stochastic differential equation fractional brownian motion quasi-conditional expectation
  • 相关文献

参考文献14

  • 1Pardoux E,Peng S.Adapted Solution of a Backward Stochastic Differential Equation.Syst.Control. Lett.,1990,14(1):55-61.
  • 2Fan S,Jiang L.Existence and Uniqueness Result for a Bacward Stochastic Differential Equation whose Generator is Lipschitz Continuous in y and Uniformly Continuous in z.J.Appl.Math.Comput., 2011,36(1-2):1-10.
  • 3Fan S,Jiang L.Uniqueness Result for the BSDE Whose Generator is Monotonic in y and Uniformly Continuous in z.C.R.Acad.Sci.Paris,Ser.,2010,348(1-2):89-92.
  • 4Fan S,Jiang L.A Generalized Comparison Theorem for BSDEs and Its Applications.J.Theory Probab.,2012,25(1):50-61.
  • 5Briand P,Hu Y.BSDE with Quadratic Growth and Unbounded Terminal Value.Probab.Theory Relat.Fields,2006,136(4):604-618.
  • 6Duncan T E,Hu Y,Pasik-Duncan B.Stochastic Calculus for Fractional Brownian Motion 1.Theory SIAM J.Control Optim.,2000,38(2):582-612.
  • 7Hu Y,Oksendal B.Fractional white Noise Calculus and Applications to Finance.Infinit Dimens.A NAL.Quant.Probab.Rel.Top.,2003,6(1):1-32.
  • 8Alos E,Mazet O,Nualart D.Stochastic Calculus with Respect to Gaussian Processes.Ann.Probab., 2001,29(2):766-801.
  • 9Mishura Y.Stochastic Calculus for Fractional Brownian Motion and Related Process.Berlin,Heidelberg: Springer-Verlag,2008.
  • 10Nualart D.Stochastic Integration with Factional Brownian Motion and Applications.Stochastic Models,Contemp.Math.,2003,336(1):1-39.

同被引文献22

  • 1詹惠蓉,程乾生.亚式期权在依赖时间的参数下的定价[J].管理科学学报,2004,7(6):24-29. 被引量:10
  • 2刘韶跃,方秋莲,王剑君.多个分数次布朗运动影响时的混合期权定价[J].系统工程,2005,23(6):110-114. 被引量:7
  • 3冉启康.一类非Lipschitz条件的BSDE解的存在唯一性[J].工程数学学报,2006,23(2):286-292. 被引量:3
  • 4王国强,马德全,宋华.亚式期权的一种定价方法[J].数学理论与应用,2007,27(3):113-116. 被引量:6
  • 5HU Yaozhong, 0KSENDAL B. Fractional white noise calculus and application to finance [ J]. Infinite Dimensional Analysis,Quantum Probability and Related Topics, 2003, 6(1) :1-32.
  • 6MISHURA Y. Stochastic calculus for fractional brownian motions and related processes[M]. Berlin; Springer,2008.
  • 7ELLIOTT R, HOEK J V D. A general fractional white noise theory and applications to finance[ J]. Mathematical Finance,2003’13(2) :301-330.
  • 8NECULA C. Option pricing in a fractional brownian motion environment [ J]. Mathematical Reports, 2004,6(3) :259-273.
  • 9BENDER C, SOTTINE T, VALKEILA E. Arbitrage with fractional brownian motion [ J]. Theory of Stochastic Processes,2006’ 12(3) :1-12.
  • 10ZHANG PETER G. Exotic options: a guide to second generation options [M]. 2nd ed. Singapore: World Scientific Publish-ing Co Pte Ltd, 1998.

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部