摘要
本文致力于研究共振情形下二阶三点边值问题x″(t)+f(t,x(t),x′(t))+0,t∈(0,1)x(0)=0,x(1)=ζx(η)其中f:[0,1]×R^2→R是一个连续函数,ζ>0,0<η<1满足ζη=1运用先验界估计,微分不等式技巧和Leray-Schauder度理论得到了该边值问题解的存在性和唯一性.
This paper is devoted to studying,the second-order three point boundary value problem ar resonance x"(t) + f(t,x(t),x'(t)) =0,t∈(0,1), x(0) = 0,x:(1) =ξx(η), where f:[0,1]×R^2→R is continuous,ξ0,0η1 such thatξη=1.The existence and uniqueness of solution of the boundary value problem are given by using priori estimates, differential inequalities technique and Leray-Schauder degree theory.
出处
《应用数学学报》
CSCD
北大核心
2012年第2期375-384,共10页
Acta Mathematicae Applicatae Sinica
基金
江苏省自然科学基金(BK2009105
BK2008119)
江苏省高校自然科学基金(09kjd110001
08kjb110011)
江苏技术师范学院青年科研基金(KYY08033)资助项目