期刊文献+

非线性项依赖于一阶导数的共振情形下二阶三点边值问题解的存在性和唯一性

Existence and Uniqueness of Three-point Boundary Value Problem at Resonance with Nonlinear Term Depending on the First Order Derivative
原文传递
导出
摘要 本文致力于研究共振情形下二阶三点边值问题x″(t)+f(t,x(t),x′(t))+0,t∈(0,1)x(0)=0,x(1)=ζx(η)其中f:[0,1]×R^2→R是一个连续函数,ζ>0,0<η<1满足ζη=1运用先验界估计,微分不等式技巧和Leray-Schauder度理论得到了该边值问题解的存在性和唯一性. This paper is devoted to studying,the second-order three point boundary value problem ar resonance x"(t) + f(t,x(t),x'(t)) =0,t∈(0,1), x(0) = 0,x:(1) =ξx(η), where f:[0,1]×R^2→R is continuous,ξ0,0η1 such thatξη=1.The existence and uniqueness of solution of the boundary value problem are given by using priori estimates, differential inequalities technique and Leray-Schauder degree theory.
出处 《应用数学学报》 CSCD 北大核心 2012年第2期375-384,共10页 Acta Mathematicae Applicatae Sinica
基金 江苏省自然科学基金(BK2009105 BK2008119) 江苏省高校自然科学基金(09kjd110001 08kjb110011) 江苏技术师范学院青年科研基金(KYY08033)资助项目
关键词 非线性边值问题 存在性和唯一性 共振 上下解 LERAY-SCHAUDER度 nonlinear boundary value problem existence and uniqueness resonance upper and lower solutions Leray-Schauder degree
  • 相关文献

参考文献11

  • 1II'in V A,Moiseev E I.Nonlocal Boundary Value Problems of the First Kind for a Strum-Liouville Operator in Its Differential and Finite Difference Aspects.J.Differential Equations,1987,23(7): 803-810.
  • 2II'in V A,Moiseev E I.Nonlocal Boundary Value Problems of the Second Kind for a Strum-Liouville Operator in Its Differential and Finite Difference Aspects.J.Differential Equations,1987,23(8): 979-987.
  • 3Gupta C P.A Sharper Condition for the Solvability of a Three-point Second-order Boundary Value Problem.J.Math.Anal.Appl.,1997,205:579-586.
  • 4Gupta C P,Trofimchuk S.Existence of a Solution to a Three-point Boundary Value Problem and the Spectral Radius of a Related Linear Operator.Nonlinear Anal.,1998,34:498-507.
  • 5He X M,Gei W G.Triple Solutions for Second Order Three-point Boundary Value Problems.J. Math.Anal.Appl.,2002,268:256-265.
  • 6Ma R Y.Multiplicity Results for a Three-point Boundary Value Problems at Resonance.Nonlinear Anal.TMA.,2003,53:777-789.
  • 7Ma R Y.Multiplicity of Positive Solutions for a Second-order Three-point Boundary Value Problems. Comput.Math.Appl.,2000,40:193-204.
  • 8Liu B.Positive Solutions of a Nonlinear Three-point Boundary Value Problems.Computers Math. Appl.,2002,44:201-211.
  • 9Anderson D R.Solutions to Second-order Three-point Problems on Time Scales.Journal of Difference Equations and Applications,2002,8:673-688.
  • 10Du Z J,Xue C Y,Ge W G.Multiple Solutions for Three-point Boundary Value Problem with Nonlinear Terms Depending on the First Order Derivative.Arch.Math.,2005(84):341-349.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部