期刊文献+

基于项目和标签的随机游走个性化信息推荐模型 被引量:10

An Information Recommendation Model Based on Item and Tag Random Walk Model
下载PDF
导出
摘要 近几年,各大社会媒体都在致力于提供良好的信息推荐服务,应对网络资源的增长和用户的个性化需求,然而数据稀疏性问题成为了影响推荐性能的主要障碍因素之一。本文在随机游走(RWR)算法的基础上进行了改进,提出了一种项目一标签导向的随机游走推荐模型(TRWR),针对特定用户分别在项目空间和标签空间中根据对象之间的相似性计算转移概率,进行有限步长的随机游走,在两个空间中都生成若干个待推荐项目,然后重新计算预测评分,最后对该用户进行个性化信息推荐。在计算对象之间相似性的过程中,本文采用了融合评分差异性和共同评分用户数的相似度计算方法。我们的实验基于MovieLens公开数据集,并与Top—N、DV和RWR这三种项目导向方法进行了对比,结果表明本文提出的模型提高了Precision值和Recall值,并使得MAE值有所下降。 In recent years, information recommendation plays a more and more important role in Internet service. However, data sparseness has become one of major obstacles to the performance of recommendation. This paper proposes an algorithm named item-tag-based random walk recommender (TRWR) , which is based on the random walk recommender (RWR) algorithm. The idea in this paper is as follows: firstly, for a target user, it calculates transition probabilities between items and tags separately, then takes finite length random walks in the item space and the tag space in order to generate some recommended items. Secondly, it recalculates these items' scores. Finally, it recommends some items to the target user. When calculating similarities between items and tags, we introduce the number of same scorers . Experiments on MovieLens dataset show that TRWR algorithm outperforms three other item-oriented approaches which are Top-N, DV and RWR, because it improves the Precision value and the Recall value, at the same time decreasing the MAE value.
出处 《情报学报》 CSSCI 北大核心 2012年第3期289-296,共8页 Journal of the China Society for Scientific and Technical Information
基金 基金项目:国家自然科学基金资助项目(编号:60673039,60973068) 国家社科基金(编号:08BTQ025) 国家863高科技计划资助项目(编号:2006AA012151)和教育部博士点基金(编号:20090041110002).
关键词 个性化信息推荐 数据稀疏 随机游走 personalized information recommendation, sparseness, random walk
  • 相关文献

参考文献10

  • 1Kleinberg J,Sandler M.Convergent Algorithms for Colla-borative Filtering[C]//Proceedings of the 4th ACM Conference on Electronic Commerce,New York,NY,USA,2003:1-10.
  • 2Kleinberg J,Sandler M.Using Mixture Models for Colla-borative Filtering[C]//Proceedings of the 36th Annual ACM Symposium on Theory of Computing,New York,NY,USA,2004:569-578.
  • 3Adomavicius G,Tuzhilin A.Toward the Next Generation of Recommender Systems:A Survey of the State-of-the-Art and Possible Extensions[J].IEEE Transactions on Knowledge and Data Engineering,2005,17(6):734-749.
  • 4Breese J S,Heckerman D,Kadie C.Empirical Analysis of Predictive Algorithms for Collaborative Filtering[C]//Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence,Madison,USA,1998:43-52.
  • 5Yildirim H,Krishnamoorthy M S.A random walk method for alleviating the sparsity problem in collaborative filtering[C]//Proceedings of the 4th ACM Conference on Recommender Systems,Lausanne,Switzerland,2008:131-138.
  • 6de Gemmis M,Lops P,Semeraro G,et al.Integrating tags in a semantic content-based recommender[C]//Procee-dings of the 4th ACM Conference on Recommender Systems,Lausanne,Switzerland 2008:163-170.
  • 7Zhen Y,Li W J,Yeung D Y.Tagico:Tag informed colla-borative filtering[C]//Proceedings of the 5th ACM Conference on Recommender Systems,New York,NY,USA,2009:69-76.
  • 8Sen S,Vig J,Riedl J.Tagommenders:Connecting Users to Items through Tags[C]//Proceedings of the 18th Inter-national World Wide Web Conference,Madrid,Spain,2009:671-680.
  • 9Sen S,Vig J,Riedl J.Learning to recognize valuable tags[C]//Proceedings of the 13th International Conference on Intelligent User Interfaces,New York,NY,USA,2009:87-96.
  • 10Liu D,Hua X S,Yang L J,et al.Tag Ranking[C]//Proceedings of the 18th International World Wide Web Conference,Madrid,Spain,2009:351-360.

同被引文献186

引证文献10

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部