期刊文献+

基于K-EROS的QAR数据集的相似性分析 被引量:1

Similarity analysis of QAR data sets based on K-EROS
下载PDF
导出
摘要 叙述了传统的PCA方法在处理QAR数据相似性问题的不足,提出基于EROS的KPCA方法处理QAR数据之间的相似性问题。通过引入EROS方法而不需要对数据进行向量化,引入核矩阵对QAR数据进行主成分分析,可以有效降低数据的维数。选取两组QAR数据集,采用支持向量积方法,选用不同数目的主成分进行分类实验,同SPCA方法和GPCA方法进行比较,实验结果显示把该方法运用到QAR数据集,具有较好的分类结果。 This paper analyzes the problems of traditional Principal Component Analysis (PCA) when comparing the similarity of QAR data. The Kernel Principal Component Analysis(KPCA) based on EROS is proposed to deal with these problems. This paper in- troduces EROS method without vector treatment and adopts the kernel matrix of principal component analysis to reduce the dimension of QAR data. This paper gives classification on two groups of QAR data sets by using support vector products method with selecting different number of principal component, and compares it with SPCA and GPCA method. The results show that the proposed method used for QAR data has a good effect on classification.
出处 《计算机工程与应用》 CSCD 2012年第9期108-110,119,共4页 Computer Engineering and Applications
基金 国家自然科学基金(No.60672174 60776806)
关键词 快速存取记录器(QAR)数据 主成分分析 核矩阵 相似性 Quick Access Recorder(QAR) data Principal Component Analysis kernel matrix similarity
  • 相关文献

参考文献12

  • 1黄永芳,黄圣国,孙同江.QAR数据译码的航班划分[J].交通运输工程学报,2004,4(1):114-117. 被引量:11
  • 2卿立勇,黄圣国,林钰森.基于QAR数据的飞机系统故障预测与故障诊断支持系统研究[J].江苏航空,2006(2):11-12. 被引量:15
  • 3Jolliffe I T.Principal component analysis[M].[S.l.]:Springer,2002.
  • 4PoP H I F.Principal components analysis based on a fuzzy set approach[J].Studia Univ Babes-Bolya Infromatica,2001,46:45-52.
  • 5Scholkopf B,Smola A J,Muller K R.Nonlinear component anal-ysis as a kernel eigenvalue problem[J].Neural Computation,1998,10(5):1299-1319.
  • 6Muller K R,MiKa S,Ratsch G,et al.An introduction to kernel-based learning algorithms[J].LEEE Trans on Pattern Anal Ma-chine Intell,2001,12(2):181-201.
  • 7Gunn S R.Support vector machines for classification and regres-sion,Technical Report11[R].1998.
  • 8Park C H,Park H.Nonliner feature extraction based on cancroids and kernel functions[J].Pattern Recognition,2004,37:801-810.
  • 9Hui Kanghua,Wang Chunheng.Clustering-based locally linear embedding[C]//19th International Conf on Pattern Recognition,2008.
  • 10Yoon H,Yang K,Shahabi C.Feature subset selection and feature ranking for multivariate time series[J].IEEE Trans on Knowledge Data Eng—Special Issue on Intelligent Data Preparation,2005,17(9).

二级参考文献9

  • 1U S General Accounting Office. U S effort to implement flight operational quality assurance program[J]. Flight Safety Digest, 1998,17(9) : 1-36.
  • 2The Boeing Company. 737/757/767 digital flight data acquisition unit interface control and requirements document[Z]. The Boeing Company, 1999.
  • 3施红芹.C++Builder 5.0编程实例应用指南[M].北京:航空工业出版社,2000..
  • 4黄圣国 张立成.飞行数据译码及应用新发展[J].南京航空航天大学学报,1999,12:161-167.
  • 5U. S. General Accounting Office. U. S. effort to implement flight operational quality assurance program[J]. Flight Safety Digest, 1998,17(9) :1-36.
  • 6施红芹.C++Builder5,0编程实例应用指南[M].北京:航空工业出版社,2000..
  • 7The Boeing Company. 737/757/767 digital flight data acquisition unit interface control and requirements document[Z]. The Boeing Company, 1999.
  • 8以涛.飞行数据分析及译码[J].航空工程与维修,2000(1):25-26. 被引量:13
  • 9刘仪.防范可控飞行撞地事故的最新进展[J].国际航空,2001(12):41-42. 被引量:6

共引文献22

同被引文献13

  • 1胡朝江,陈列,杨全法.飞机飞参系统及应用[M].北京:国防工业出版社,2012:164—165.
  • 2Boeing Commercial Airplanes. Statistical summary of commercial jet airplane accidents worldwide operations 1959-2012[R]. Seattle, WA: Boeing Commercial Airplanes, 2013.
  • 3Federal Aviation Administration. Revisions to Digital Flight Data Recorder Rules[S], 1997.
  • 4Javensius Sembiring, Ludwig Drees, Florian Holzapfel. Extracting unmeasured parameters based on Quick Access Recorder data using parameter- estimation method [A].AIAA Atmospheric Flight Mechanics (AFM) Conference[C], 2013.
  • 5US. Department of Transportation, Federal Aviation Administration. Flight Operational Quality Assurance [Z], 2004.
  • 6国防科学技术工业委员会.机载飞行数据采集器通用规范[Z],2001-11-15.
  • 7中华人民共和国航空航天工业部.机载飞行数据记录器最低性能标准[Z],1990-4-28.
  • 8Lishuai Li., Gariel M, Hansman R.J.Anomaly detection in onboard-recorded flight data using cluster analysis[R].MIT, Cambridge, MA Rafael Palacios, Comillas Pontificial University, Madrid, Spain.
  • 9中国民用航空局航空安全办公室.运行阶段与地面阶段[Z],2014-01-16.
  • 10冯兴杰,李胜,郇秀霞.基于小波尺度系数的民航QAR数据约简及其性能分析[J].计算机工程与设计,2009,30(5):1255-1258. 被引量:6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部