期刊文献+

一种小波和脊波联合去噪方法 被引量:9

Image-denoising method combining wavelet with ridgelet transforms
下载PDF
导出
摘要 由于小波变换不能有效地处理图像中的奇异线,而脊波变换能很好地弥补这一不足,提出了一种基于图像分块的小波和脊波联合去噪方法。该方法把噪声图像分成一定尺寸的图像块并选择其中的同质块和非同质块;利用小波去噪方法处理同质块,而非同质块用脊波去噪方法处理得到去噪后的图像;用维纳滤波器进一步处理去噪后的图像。实验表明,该方法与单纯的小波去噪方法和脊波去噪方法相比,信噪比有了较高的改善,能有效地保留图像的边缘细节信息。 As the ridgelet transform can process line singularities of images more efficiently than the wavelet transform, an image-de- noising method combining the wavelet transform with the ridgelet transform is proposed. The proposed method divides a noisy image into homogeneous blocks and non-homogeneous blocks, and the homogeneous and non-homogeneous blocks are processed by the wavelet transform and the ridgelet transform respectively. The processed image is filtered by the Wiener filter. Experimental results show that the proposed method has higher SNRs for the denoised images than both the ridgelet denoising method and the wavelet de- noising method. The proposed method is found more efficient in preserving image details.
作者 蔡政 陶少华
出处 《计算机工程与应用》 CSCD 2012年第9期201-204,共4页 Computer Engineering and Applications
基金 中南大学学位论文创新基金
关键词 图像去噪 小波变换 脊波变换 同质块 image denoising wavelet transform ridgelet transform homogeneous block
  • 相关文献

参考文献14

  • 1Chang S G,Yu B,Vetterli M.Adaptive wavelet thresholding for image denoising and compression[J].IEEE Transactions on Im-age Processing,2000,9(9):1532-1546.
  • 2Zhao Ruizhen,Liu Xiaoyu,Li Ching-Chung,et al.A new denoising method based on wavelet transform and sparse representation[C]//Yuan B Z,Ruan Q Q,Tang X F.9th International Conference on Signal Processing,Beijing,2008.New York:IEEE,2008:171-174.
  • 3Candes E J.Ridgelets:a key to higher dimensional intermitten-cy[J].Philosophical Transactions of the Royal Society of London,1999,A357(1760):2459-2509.
  • 4Kelley B T,Madisetti V K.The fast discrete radon transform-I:theory[J].IEEE Transactions on Image Processing,1993,2(3):382-400.
  • 5Starck J L,Candes E J,Donoho D L.The curvelet transform for image denoising[J].IEEE Transactions on Image Processing,2002,11(6):670-684.
  • 6Do M N,Vetterli M.The finite ridgelet transform for image rep-resentation[J].IEEE Transactions on Image Processing,2003,12(1):16-28.
  • 7Liu Yunxia,Peng Yuhua,Siu Wan-Chi.Energy-based adaptive trans-form scheme in the DPRT domain and its application to image denoising[J].Signal Processing,2009,89(1):31-44.
  • 8谭兮,凌玉华,谭山.脊波框架的构造及其在图像去噪中的应用[J].电子技术应用,2007,33(7):58-60. 被引量:3
  • 9Lu L W,Shui P L.Linetype structure image denoising via im-proved finite ridgelet transform[C]//Yuan B Z,Ruan Q Q,Tang X F.8th International Conference on Signal Processing,Guilin,China,2006.New York:IEEE,2006:1023-1027.
  • 10Wang X.Wrap-around effect removal finite ridgelet transform for multiscale image denoising[J].Pattern Recognition,2010,43(11):3693-3698.

二级参考文献35

  • 1郭旭静,侯正信.基于小波基向量的改进FRIT去噪方法[J].电子测量与仪器学报,2005,19(6):49-54. 被引量:5
  • 2侯正信,杨爱萍.对称延拓小波变换矩阵用于FRIT去噪[J].光电子.激光,2007,18(5):603-607. 被引量:5
  • 3DONOHO D L,VETTERI M, DEVORE R A, et al. Data compression and harmonic analysis [J]. IEEE Trans Info Theory,t998, 44(6) : 2 435-2 476.
  • 4CANDES E J. Ridgelets : Theory and Applications [ D ]. Stanford: Department of Statistics Stanford University, 1998.
  • 5CANDES E J, DONOHO D L. Ridgelets:A key to higher-dimension intermittency? [ J]. Phil Trans R Soc Lond A, 1999:2 495-2 509.
  • 6DONOHO D L. Tight frames of k-plane ridgelets and the problem of representing objects that are smooth away from d-dimensional singularities in R[ J ]. Applied Mathematics Proc Nat! Acad Sci USA,1999,96:1 828-1 833.
  • 7DONOHO D L, VETTERLI M, DEVORE R A, et al. Data compression and harmonic analysis [ J ]. IEEE Trans Info Theory,1998, 44(6) : 2 435-2 476.
  • 8CANDES E J. Ridgelets and the Representation of Mutilated Sobolev Functions [M]. Nashville: Vanderbilt University Press, 1999.
  • 9DONOHO D L. Orthonormal Ridgelets and Linear Singularities [ J ]. SIAM J Math Anal, 2000,31 ( 5 ) : 1062- 1099.
  • 10Mallat S G. A Wavelet Tour of Signal Processing [ M]. 2nd ed. Beijing: China Machine Press, 2003: 255-286.

共引文献9

同被引文献79

引证文献9

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部