期刊文献+

基于混沌自适应遗传ν-SVR的城市客运量预测 被引量:5

Prediction of passenger traffic volume using ν-support vector regression optimized by chaos adaptive genetic algorithm
下载PDF
导出
摘要 针对城市客运量预测问题本身所存在的小样本、高维数和非线性等特点,将ν-支持向量回归机(ν-support vector regression,ν-SVR)应用于城市客运量预测.为了提高ν-SVR模型的预测精度和泛化性能,利用基于混沌理论和自适应机制的混沌自适应遗传算法(chaosadaptive genetic algorithm,CAGA)优选ν-SVR模型参数,建立了基于CAGA进行参数优选的CAGA-ν-SVR城市客运量预测模型.结合1978~2008年统计数据进行了仿真预测,结果表明该模型的预测性能优于RBF神经网络模型、GA-SVR模型和GA-ν-SVR模型,平均绝对相对误差控制在2.3%以内,可有效应用于城市客运量预测. Aiming at the prediction of passenger traffic volume with small samples,multi-dimension and nonlinearity,ν-support vector regression(ν-SVR) is introduced to forecast passenger traffic volume.To seek the optimal forecast accuracy and generalization performance of ν-SVR,chaos adaptive genetic algorithm(CAGA) is used to optimize the parameter,which is based on chaos mapping and adaptive mechanism.Then,a new passenger traffic volume forecasting model of ν-SVR named by CAGA-ν-SVR is proposed.The model is applied to forecasting passenger traffic volume with data of 1978-2008.Compared with RBF neural network model,GA-SVR model and GA-ν-SVR model,it is concluded that CAGA-ν-SVR prediction model has higher prediction precision,and can effectively predict passenger traffic volume with less than 2.3% of mean absolute relative error.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2012年第2期227-232,共6页 Journal of Dalian University of Technology
基金 高等学校博士学科点专项科研基金资助项目(200801411105) 河南省交通厅科技计划资助项目(200912)
关键词 ν-支持向量回归机 遗传算法 混沌映射 自适应机制 客运量预测 ν-support vector regression genetic algorithm chaos mapping adaptive mechanism passenger traffic volume prediction
  • 相关文献

参考文献13

  • 1VAPNIK V, LEVIN E, LECUN Y. Measuring the VC-dimension of a learning machine[J]. Neural Computation, 1994, 6(5) :851-876.
  • 2VAPNIK V. The Nature of Statistical Learning Theory[M]. New York:Springer, 1995.
  • 3GUNN S R. Support vector machines for classification and regression [R]. Southampton: Southampton University, 1998.
  • 4CAO J R, CAI A N. A robust shot transition detection method based on support vector machine in compressed domain [J]. Pattern Recognition Letters, 2007, 28(12) :1534-1540.
  • 5耿睿,崔德光,徐冰.应用支持向量机的空中交通流量组合预测模型[J].清华大学学报(自然科学版),2008,48(7):1205-1208. 被引量:27
  • 6SCHOLKOPF B, SMOLA A J, WILLIAMSON R C, et al. New support vector algorithms [J]. Neural Computation, 2000, 12(5):1207-1245.
  • 7SCHOOLKOPF B, BURGES C J C, SMOLA A J. Advances in Kernel Methods -- Support Vector Learning [M]. Cambridge:MIT Press, 1 999.
  • 8孙月峰,张胜红,王晓玲,梅传书.基于混合遗传算法的区域大系统多目标水资源优化配置模型[J].系统工程理论与实践,2009,29(1):139-144. 被引量:30
  • 9MIN Sung-hwan, LEE Ju-min, HAN Ingoo. Hybrid genetic algorithms and support vector machines for bankruptcy prediction [J]. Expert Systems with Applications, 2006, 31(3) :652-660.
  • 10RETTEMEIR K, FALKENHAGEN B, KONGETER J. Risk assessment-new trends in Germany [C] // Proceedings of the 21st International Congress on Large Dams. Beijing: The International Commission on Large Dams, 2000:625-641.

二级参考文献17

共引文献55

同被引文献35

引证文献5

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部