摘要
针对城市客运量预测问题本身所存在的小样本、高维数和非线性等特点,将ν-支持向量回归机(ν-support vector regression,ν-SVR)应用于城市客运量预测.为了提高ν-SVR模型的预测精度和泛化性能,利用基于混沌理论和自适应机制的混沌自适应遗传算法(chaosadaptive genetic algorithm,CAGA)优选ν-SVR模型参数,建立了基于CAGA进行参数优选的CAGA-ν-SVR城市客运量预测模型.结合1978~2008年统计数据进行了仿真预测,结果表明该模型的预测性能优于RBF神经网络模型、GA-SVR模型和GA-ν-SVR模型,平均绝对相对误差控制在2.3%以内,可有效应用于城市客运量预测.
Aiming at the prediction of passenger traffic volume with small samples,multi-dimension and nonlinearity,ν-support vector regression(ν-SVR) is introduced to forecast passenger traffic volume.To seek the optimal forecast accuracy and generalization performance of ν-SVR,chaos adaptive genetic algorithm(CAGA) is used to optimize the parameter,which is based on chaos mapping and adaptive mechanism.Then,a new passenger traffic volume forecasting model of ν-SVR named by CAGA-ν-SVR is proposed.The model is applied to forecasting passenger traffic volume with data of 1978-2008.Compared with RBF neural network model,GA-SVR model and GA-ν-SVR model,it is concluded that CAGA-ν-SVR prediction model has higher prediction precision,and can effectively predict passenger traffic volume with less than 2.3% of mean absolute relative error.
出处
《大连理工大学学报》
EI
CAS
CSCD
北大核心
2012年第2期227-232,共6页
Journal of Dalian University of Technology
基金
高等学校博士学科点专项科研基金资助项目(200801411105)
河南省交通厅科技计划资助项目(200912)
关键词
ν-支持向量回归机
遗传算法
混沌映射
自适应机制
客运量预测
ν-support vector regression genetic algorithm chaos mapping adaptive mechanism passenger traffic volume prediction