期刊文献+

基于0-1规划的异构传感器网络任务分配策略 被引量:6

Task allocation strategy in heterogeneous wireless sensor networks based on 0-1 programming
下载PDF
导出
摘要 为了减少无线传感器网络节点处理任务的总体能耗、均衡网络节点的剩余能量以及减少网络中任务的调度时间,提出一种三目标任务分配算法。利用0-1非线性规划理论建立问题的代价函数,用能量方差表征节点处理任务后的剩余能量均衡度,并结合离散粒子群优化算法(DPSO),以最小化代价函数为优化目的,从而得出经优化的任务分配策略。仿真实验表明基于0-1规划的任务分配策略能有效地减少网络总体能耗,均衡网络节点剩余能量(延长网络寿命)以及减少任务调度时间。 In order to reduce total energy consumption for processing task in Wireless Sensor Network(WSN),balance the residual energy of nodes and decrease the time of task scheduling,a task allocation algorithm for three targets was proposed.Cost function was built with the theory of 0-1 nonlinear programming and energy variance was utilized to show equilibrium degree of residual energy of nodes.Discrete Particle Swarm Optimization(DPSO) was used to solve cost function to obtain minimum and get optimized task allocation strategy.The simulation results verify that the task allocation strategy based on 0-1 programming with DPSO could decrease the energy consumption efficiently,balance the residual energy of nodes and reduce the time of task scheduling.
出处 《计算机应用》 CSCD 北大核心 2012年第4期913-916,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(61075019) 重庆市自然科学基金资助项目(CSTC2011jjA40045) 博士启动资金资助项目(A2009-10)
关键词 无线传感器网络 0-1规划 任务分配 任务图 离散粒子群算法 Wireless Sensor Network(WSN) 0-1 programming task allocation task graph Discrete Particle Swarm Optimization(DPSO) algorithm
  • 相关文献

参考文献12

二级参考文献173

共引文献803

同被引文献35

  • 1朱敬华,高宏.无线传感器网络中能源高效的任务分配算法[J].软件学报,2007,18(5):1198-1207. 被引量:21
  • 2Yu Y, Prasanna V K. Energy-balanced task allocation for collaborative processing in wireless sensor networks[J]. Mobile Networks and Applications, 2005, 10(1): 115-131.
  • 3Zheng Q, Tham C K. Veeravalli, et al. Dynamic load balancing and pricing in grid computing with communication delay[C]//Grid Economics and Business Models. Washington: Journal of Grid Computing, 2008: 239-253.
  • 4Tian Y, Ekici, Eylem, et al. Energy-constrained task mapping and scheduling in wireless sensor networks[C]//2nd IEEE International Conference on Mobile Ad-hoc and Sensor Systems. New York: MASS, 2005:211-218.
  • 5Hagres T, Janecek J. A high performance, low complexity algorithm for compile-time job scheduling in homogeneous computing environments[C]//Proeeedings 2003 International Conference on Parallel Processing Workshops. New York: ASME, 2003: 25-29.
  • 6Wang Z, YanY J, Jia P, et al. Market-based adaptive task scheduling for sensor networks[C]//International Conference on Wireless Communications, Networking and Mobile Computing. Wuhan: WiCOM, 2006: 17-21.
  • 7Soh L K,Tsatsoulis C.Reflective negotiating agents for real-time multisensor target tracking[C] //Proceedings of the International Joint Conference on Artificial Intelligence.Seattle,WA,USA,2001:1121-1127.
  • 8Chen Jianxia,Zang Chuanzhi,Liang Wei,et al.Auction-based dynamic coalition for single target tracking in wireless sensor networks[C] //Proceedings of the 6th World Congress on Intelligent Control and Automation.Dalian,China,2006:94-98.
  • 9Peng Pengfei,Luo Hao,Liu Zhong,et al.A cooperative target location algorithm based on time difference of arrival in wireless sensor networks[C] //Proceedings of the 2009 IEEE International Conference on Mechatronics and Automation.Changchun,China,2009:696-700.
  • 10Wang Xue,Ma Junjie,Wang Sheng,et al.Cluster-based dynamic energy management for collaborative target tracking in wireless sensor networks[J].Sensors,2007,7(7):1194-1215.

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部