期刊文献+

基于上下文环境和句法分析的蛋白质关系抽取 被引量:2

Protein-protein interaction extraction based on contextual and syntactic features
下载PDF
导出
摘要 针对蛋白质交互作用关系(PPI)抽取方法中特征利用的片面性问题,提出了一种从上下文环境和句法结构中抽取特征的方法。该方法抽取词法特征、位置特征、距离特征、依存句法特征和深层句法特征等丰富特征构成特征集,并且使用支持向量机(SVM)分类器进行PPI抽取。方法在5个公开的PPI语料上进行了评估。实验结果表明,丰富特征有效地利用了更为全面的信息,避免丢失重要特征的危险,得到了较好的PPI抽取性能。即在AImed语料上的实验取得了59.2%的F值和85.6%的曲线下面积(AUC)值。 Considering the one-sidedness of features used in many Protein-Protein Interaction(PPI) extraction methods,a new approach was proposed to extract rich features from context information and syntax structure for PPI extraction.Various features,such as lexicon,position,distance,dependency syntax and deep syntax features constitute feature set,and the Support Vector Machine(SVM) classifier was used for PPI extraction.The experimental evaluation on multiple PPI corpora reveals that the rich features can utilize more comprehensive information to reduce the risk of missing some important features.This method achieves state-of-the-art performance with respect to comparable evaluations,with 59.2% F-score and 85.6% Area Under Curve(AUC) on the AImed corpus.
出处 《计算机应用》 CSCD 北大核心 2012年第4期1074-1077,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(60973068 61070098) 国家863计划项目(2006AA01Z151) 教育部留学回国人员科研启动基金 高等学校博士学科点专项科研基金资助课题(20090041110002)
关键词 信息抽取 自然语言处理 蛋白质关系抽取 特征 支持向量机 information extraction natural language processing Protein-Protein Interaction(PPI) extraction feature Support Vector Machine(SVM)
  • 相关文献

参考文献13

  • 1ZANZONI A,MONTECCHI-PALAZZI L,QUONDAM M,et al.MINT:A molecular INTeraction database[J].FEBS Letters,2002,513(1):135-140.
  • 2BADER G,BETEL D,HOGUE C.Bind—the biomolecular interac-tion network database[J].Nucleic Acids Research,2003,31(1):248-250.
  • 3XENARIOS I,RICH D W,SALWINSKI L,et al.DIP:The data-base of interacting proteins[J].Nucleic Acids Research,2000,28(1):289-291.
  • 4BUNESCU R,MOONEY R,RAMANI A.Integrating co-occurrencestatistics with information extraction for robust retrieval of protein in-teractions from Medline[C]//BioNLP'06:Proceedings of the Work-shop on Linking Natural Language Processing and Biology:TowardsDeeper Biological Literature Analysis.Stroudsburg:Association forComputational Linguistics,2006:49-56.
  • 5FUNDEL K,KUFFER R,ZIMMER R.RelEx-relation extraction u-sing dependency parse trees[J].Bioinformatics,2006,23(3):365–371.
  • 6NIELSEN L A.Extracting protein-protein interactions using simplecontextual features[C]//BioNLP'06:Proceedings of the Workshopon Linking Natural Language Processing and Biology:Towards Dee-per Biological Literature Analysis.Stroudsburg:Association forComputational Linguistics,2006:120-121.
  • 7MIYAO Y,SAETRE R,SAGAE K,et al.Task-oriented evaluationof syntactic parsers and their representations[EB/OL].[2011-05-01].http://www.aclweb.org/anthology-new/P/P08/P08-1006.pdf.
  • 8BUNESCU R C,MOONEY R J.A shortest path dependency kernelfor relation extraction[C]//HLT'05:Proceedings of the Conferenceon Human Language Technology and Empirical Methods in NaturalLanguage Processing.Stroudsburg:Association for ComputationalLinguistics,2005:724-731.
  • 9AIROLA A,PYYSALO S,BJRNE J,et al.All-paths graph ker-nel for protein-protein interaction extraction with evaluation of cross-corpus learning[J].BMC Bioinformatics,2008,9(Suppl 11):S2.
  • 10MIWA M,STRE R,MIYAO Y,et al.Protein-protein interactionextraction by leveraging multiple kernels and parsers[J].Interna-tional Journal of Medical Informatics,2009,78(12):39-46.

同被引文献28

  • 1谈文蓉,符红光,刘莉,杨宪泽.一种基于贝叶斯分类与机读词典的多义词排歧方法[J].计算机应用,2006,26(6):1389-1391. 被引量:5
  • 2LIBLIT B. The cooperative bug isolation project[ EB/OL]. [ 2003 - 10 -09]. http://www, es. wise. edu/cbi/.
  • 3WOOD M. A dynamic approach to statistical debugging: building program specific models with neural networks[ D]. Georgia: Georgia Institute of Technology, 2007.
  • 4ZHENG A X, JORDAN M I, LIBLIT B, et al. Statistical debug- ging: simultaneous identification of multiple bugs[ C]//Proceedings of the 23rd International Conference on Machine Learning. New York: ACM Press, 2006:1105 - 1112.
  • 5ZHENG A, JORDAN M, LIBLIT B, et al. Statistical debugging of sampled programs[ C]// Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2004:501 -510.
  • 6LIU C, "YAN X F, FE1 L. Sober: statistical model-based bug locali- zation[ J]. Symposium on the Foundations of Software Engineering, 2006, 30(5) : 286 -295.
  • 7LIBLIT B, NAIK M, ZHENG A X, et al. Scalable statistical bug i- solation[ C]// PLDI '05: Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language Design and Implementation. New York: ACM Press, 2005:15 -26.
  • 8HANGAL S, LAM M S. Tracking down software bugs using auto- matic anomaly detection[ C]// Proceedings of the 24th International Conference on Software Engineering. Washington, DC: IEEE Com- puter Society, 2002:291 - 301.
  • 9LIU C, FEI L, YAN X, HAN J, et al. Statistical debugging: a hy- pothesis testing-based approach[ J]. IEEE Transactions on Software Engineering, 2006, 10(3) : 831 -848.
  • 10ANDRZEJEWSKI D, MULHERN A, LIBLIT B, et al. Statistical debugging using latent topic models[ C]// 18th European Confer- ence on Machine Learning. Berlin: Springer-Verlag, 2007:6 - 17.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部