期刊文献+

基于互补特征的纹理图像检索 被引量:2

Texture image retrieval based on complementary features
下载PDF
导出
摘要 针对互补特征可以有效地改善图像检索系统性能的特点,提出一种在改进Contourlet变换域采用L1能量与广义高斯分布参数特征的纹理图像检索方法。首先,应用改进的方法对方向子带系数进行广义高斯统计建模。然后,分别单独利用各个特征和相应的相似性测度进行检索。最后,基于直接的相似性测度和,采用这两种互补的特征进行检索。实验结果表明,和采用单一特征相比较,互补特征由于充分地反映了图像的结构信息和随机分布信息,从而有效地提高了纹理图像数据库的平均检索率。 Because the performance of the image retrieval system could be effectively improved by using the complementary features,a retrieval method of the texture image using L1 energy and generalized Gaussian distribution parameter features was proposed in the improved Contourlet transform domain.Firstly,the directional subband coefficients went through generalized Gaussian modeling with an improved approach.Then,the texture images were respectively retrieved based on the single feature and the corresponding similarity measurement.Lastly,using the complementary features and the direct summation of their similarity measurements,the texture images were retrieved.The experimental results show that,compared with single feature,the average retrieval rates of the texture image database are effectively improved by the complementary features that fully represent the structural information and the random distribution information.
作者 曲怀敬
出处 《计算机应用》 CSCD 北大核心 2012年第4期1101-1103,1107,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(30870666)
关键词 改进的Contourlet变换 建模 L1能量 广义高斯分布 互补特征 纹理图像检索 improved Contourlet transform modeling L1 energy generalized Gaussian distribution complementary feature texture image retrieval
  • 相关文献

参考文献16

  • 1DATTA R,JOSHI D,LI JIA,et al.Image retrieval:Ideas,influ-ences,and trends of the new age[J].ACM Computing Surveys,2008,40(2):1-60.
  • 2RAO A R,LOHSE G L.Towards a texture naming system:identif-ying relevant dimensions of texture[J].Vision Research,1996,36(11):1649-1669.
  • 3MANJUNATH B S,MA W Y.Texture features for browsing and re-trieval of image data[J].IEEE Transactions on Pattern Analysis andMachine Intelligence,1996,18(8):837-842.
  • 4RANDEN T,HUSOY J H.Filtering for texture classification:Acomparative study[J].IEEE Transactions on Pattern Analysis andMachine Intelligence,1999,21(4):291-310.
  • 5DO M N,VETTERLI M.Wavelet-based texture retrieval using gen-eralized Gaussian density and Kullback-Leibler distance[J].IEEETransactions on Image processing,2002,11(2):146-158.
  • 6KOKARE M,BISWAS P K,CHATTERJI B N.Texture image re-trieval using new rotated complex wavelet filters[J].IEEE Transac-tions on Systems,Man,and Cybernetics—Part B:Cybernetics,2005,35(6):1168-1178.
  • 7DO M N,VETTERLI M.The contourlet transform:an efficient di-rectional multiresolution image representation[J].IEEE Transac-tions on Image Processing,2005,14(12):2091-2106.
  • 8LU YUE,DO M N.A new contourlet transform with sharp frequen-cy localization[C]//Proceedings of IEEE International Conferenceon Image Processing.Atlanta:IEEE,2006:1629-1632.
  • 9HEEGER D,BERGER J R.Pyramid-based texture analysis/synthe-sis[C]//Proceedings of International Conference on Image Process-ing.New York:ACM Press,1995:648-651.
  • 10OJALA T,PIETIKAINEN M,HARWOOD D.A comparative studyof texture measures with classification based on feature distributions[J].Pattern Recognition,1996,29(1):51-59.

同被引文献31

  • 1郑秋梅,余芳,郭兰图.基于多颜色空间的图像检索方法[J].计算机应用,2006,26(11):2707-2709. 被引量:5
  • 2BAI X, WANG B, YAO C, et al. Co-transduction for shape retriev- al [ J]. IEEE Transactions on Image Processing, 2012, 21(5): 2747 - 2757.
  • 3PAPARI G, PETKOV N. An improved model for surround suppres- sion by steerable filters and multilevel inhibition with application to contour detection [ J]. Pattern Recognition, 2011, 44(9) : 1999 - 2007.
  • 4LEE H, SEO S, YOON K. Directional texture transfer with edge enhancement [J]. Computers and Graphics, 2011, 35(1): 81-91.
  • 5KE Y, SUKTHANKAR R. PCA-SIFT: a more distinctive represen- tation for local image descriptors [ C]// Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2004:506 -513.
  • 6LUO B, WILSON R C, HANCOCK E R. Spectral embedding of graphs [J]. Pattern Recognition, 2003, 36(10): 2213-2230.
  • 7GAO X B, XIAO B, TAO D C, et al. Image categorization: graph edit distance + edge direction histogram [ J]. Pattern Recognition, 2008, 41(10): 3179 -3191.
  • 8RUBNER Y, TOMASI C, GUIBAS L J. The earth mover's distance as a metric for image retrieval [ J]. International Journal of Comput- er Vision, 2000, 40(2) : 99 - 121.
  • 9LEICHTER I. Mean shift trackers with cross-bin metrics [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(4): 695-706.
  • 10LING H B, OKADA K. An efficient earth mover's distance algo- rithm for robust histogram comparison [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29( 5): 840 - 853.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部