期刊文献+

基于Gabor滤波器的快速人脸识别算法 被引量:11

New fast face recognition algorithm based on Gabor filter
下载PDF
导出
摘要 针对传统人脸识别方法中所提取特征维数高、计算量大等缺点,提出一种新的正面人脸识别算法。新算法融合了半边人脸识别方法、Gabor滤波器、基于互信息判据的Gabor特征筛选来进行人脸识别。新算法将人脸图像分为左右两个部分,计算并比较人脸图像左右半边脸的熵,选取熵值较大的半边人脸图像进行Gabor特征提取。利用二值分类器判别单个Gabor特征的分类能力,选取分类能力较强的特征(最具判决力的特征)。再利用互信息判据对Gabor特征进行第二次筛选,以减小特征之间的冗余度。最后利用最近邻判别器来进行人脸识别。实验结果表明,新算法的识别率优于传统半边脸识别方法,识别速度也优于传统的利用Gabor滤波器进行特征提取的方法。 Concerning the disadvantage of traditional face recognition algorithm,such as high dimension of extracted feature,a great deal of computation,a fast face recognition algorithm was proposed.The algorithm integrated the half face recognition scheme,Gabor filter,Gabor features selecting method based on mutual information,and the nearest neighbor method for frontal face recognition.The face images in training set and testing set were divided into the left half and the right half,one half of the face images was chosen by entropy maximum.The features of the face images were extracted by Gabor filter.Then the rank of discriminating capabilities of features can be estimated by evaluating the classification error on intra-set and extra-set based on weak classifier built by single feature.The Gabor features with small errors were selected.And at the same time,the mutual information between the selected features was examined.The nearest neighbor method was used to recognize the frontal face.The experimental results show that the proposed method has higher accuracy than the traditional half face recognition algorithm,and is of lower computational complexity than the traditional Gabor filter algorithm.
作者 孔锐 韩佶轩
出处 《计算机应用》 CSCD 北大核心 2012年第4期1130-1132,1136,共4页 journal of Computer Applications
基金 广东省教育部产学研结合项目(2008B090500185) 广东省科技计划项目(2009A030200002) 珠海市科技计划项目(2010B070102001)
关键词 人脸识别 GABOR滤波器 特征选择 互信息 face recognition Gabor filter feature selection mutual information
  • 相关文献

参考文献7

  • 1DAUGMAN J G.Complete discrete 2-D Gabor transforms by neural net-works for image analysis and compression[J].IEEE Transactions on A-coustics,Speech and Signal Processing,1988:36(7):1169-1179.
  • 2LEE T S.Image representation using 2D Gabor wavelets[J].IEEETransactions on Pattern Analysis and Machine Intelligence,1996,18(10):959-971.
  • 3YOUNG I T,van VLIET L J,van GINKEL M.Recursive GaborFiltering[J].IEEE Transactions on Signal Processing,2002,50(11):2798-2805.
  • 4ASHRAF A B,LUCEY S,CHEN T.Reinterpreting the applicationof Gabor filters as a manipulation of the margin in linear support vec-tor machines[J].IEEE Transactions on Pattern Analysis and Ma-chine Intelligence,2010,32(7):1335-1341.
  • 5SHEN LIN-LIN,BAI LI.Mutual boost learning for selecting Gaborfeatures for face recognition[J].Pattern Recognition Letters,2006,27:1758-1767.
  • 6唐旭晟,欧宗瑛,苏铁明,胡青泥,华顺刚.人脸识别中基于互信息的特征优选[J].大连理工大学学报,2008,48(1):84-89. 被引量:2
  • 7董世都,黄同愿,王华秋,王森,杨小帆.半边人脸识别方法[J].计算机工程,2008,34(7):221-222. 被引量:2

二级参考文献16

  • 1张晓华,山世光,曹波,高文,周德龙,赵德斌.CAS-PEAL大规模中国人脸图像数据库及其基本评测介绍[J].计算机辅助设计与图形学学报,2005,17(1):9-17. 被引量:40
  • 2王蕴红,范伟,谭铁牛.融合全局与局部特征的子空间人脸识别算法[J].计算机学报,2005,28(10):1657-1663. 被引量:41
  • 3TURK M, PENTLAND A. Face recognition usingeigenfaces [C] // Proceeding of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Oakland: IEEE Computer Society Press, 1991:586-591
  • 4BARTLETT M S, MOVELLAN J R, SEJNOWSKI T J. Face recognition by independent component analysis [J]. IEEE Trans on Neural Networks, 2002, 13(6): 1450-1464
  • 5WISKOTT L, FELLOUS J, KRUGER N, et al. Face recognition by elastic bunch graph matching [J]. IEEE Trans Pattern Anal and Maeh Intell, 1997, 19(7): 775-669
  • 6YANG P, SHAN S, GAO W, et al. Facerecognition using Adaboosted Gabor features [C] // Proceedings of the Sixth IEEE International Conference on Automatic Face and Gesture Recognition. Seouh IEEE Computer Society Press, 2004:356-361
  • 7MESSER K, KITTLER J, SADEGHIN M, et al. Face authentication test on the BANCA database [C] // Proceedings of International Conference on Pattern Recognition. Cambridge:IEEE, 2004
  • 8LIU C, WECHSLER H. Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition [J]. IEEE Trans Image Proces,2002,11(4) : 467-476
  • 9SHAN Shi-guang, YANG Peng, CHEN Xi-lin, et al. Adaboost Gabor Fisher classifier for face recognition [C] // ZHAO W,GONG S, TANG X, eds. IEEE International Workshop on Analysis and Modeling of Faces and Gestures. Berlin: Springer-Verlag, 2005:279-292
  • 10MOGHADDAM B, JEBARA T, PENTLAND A. Bayesian face recognition [J]. Pattern Recognition, 2000,33(11) : 1771-1782

共引文献2

同被引文献99

引证文献11

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部