期刊文献+

弱边缘电荷耦合器件羊毛图像二值化算法 被引量:1

Binarization algorithm for CCD wool images with weak contour
下载PDF
导出
摘要 为解决弱边缘图像二值化产生羊毛几何尺寸失真问题,通过对基于灰度和梯度指数的边缘细化算法研究,结合经典的全局阈值法和局部阈值法,提出了一种电荷耦合器件(CCD)羊毛图像自动二值化算法。该算法将sobel算子和斜坡边缘模型引入现有边缘细化算法中,既增加寻找边缘点环节又改进灰度调整因子,达到提高处理效率和避免人为干预的目的;在分析最大类间方差法和Bernsen法的基础上,结合全局和局部阈值处理各个子图像,从而强化边缘细节,降低失真度。实验结果表明,与传统方法相比,该算法对于弱边缘图像二值化具有良好的性能。 In order to solve the distortion of wool geometric dimension,resulting from image binarization with weak contour,an automatic binarization algorithm for Charge-Coupled Device(CCD) wool image was proposed with reference to a ramp-width-reduction approach based on intensity and gradient indices,using a classical global threshold method and a local one.In that algorithm,edge-pixel-seeking step was added and gray-adjusting factor was improved,with sobel operator and ramp edge model introduced,to increase processing efficiency and avoid human intervention.Besides,every sub image was processed by the mixed global and local threshold based on the analysis of Otsu's and Bernsen's methods to intensify edge details and decrease distortion.Compared with the traditional ways,the experimental results show that the new algorithm has good performance in automatic binarization with weak contour.
出处 《计算机应用》 CSCD 北大核心 2012年第4期1133-1136,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(61175029) 航空科学基金资助项目(20101996009) 国防科技重点实验室基金资助项目(9140C610301080C6106)
关键词 羊毛细度测量 图像二值化 边缘宽度细化 SOBEL算子 灰度调整因子 斜坡模型 最大类间方差法 Bernsen法 wool diameter measurement image binarization ramp width reduction sobel operator gray-adjusting factor ramp edge model Otsu's method Bernsen's method
  • 相关文献

参考文献2

二级参考文献20

  • 1王国权,仲伟波.灰度图像增强算法的改进与实现研究[J].计算机应用研究,2004,21(12):175-176. 被引量:22
  • 2张红梅,卞正中,郭佑民,叶敏.感兴趣区域高效提取算法(英文)[J].软件学报,2005,16(1):77-88. 被引量:14
  • 3皮燕妮,史忠科,黄金.结构化公路车道的精确检测与跟踪[J].计算机工程与应用,2005,41(1):203-206. 被引量:4
  • 4王祥科,郑志强.Otsu多阈值快速分割算法及其在彩色图像中的应用[J].计算机应用,2006,26(B06):14-15. 被引量:40
  • 5CHEN M, JOCHEM T, AURORA PD. A vision-based roadway departure system[ A] . Proceedings of IEEE Conference on Intelligent Robots and Systems[ C], 1995. 243 -248.
  • 6CHAPUIS R, AUFRERE R, CHAUSSE F. Accurate road following and reconstruction by computer vision [ J] . IEEE Transaction on Intelligent Transportation Systems, 2002, 3 (4):261-270.
  • 7CRISMAN JD, SCARF TCE. A color vision system that tracks roads and intersections[ J]. IEEE Transactions on Robotics and Automation, 1993,9(1):49-58.
  • 8LI HD,KALLERGI M,CLARKE L P,et al.Markov random fieldfor tumor detection in digital mammography. IEEE Transactionson Medical Imaging . 1995
  • 9HUAI L,WANG Y,RAY K J,et al.Computerized radiographicmass detection part I:Lesion site selection by morphological en-hancement and contextual segmentation. IEEE Transactions onMedical Imaging . 2001
  • 10PINGSUNG L.Afast algorithmfor multilevel thresholding. Jour-nal of information science and engineering . 2001

共引文献11

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部