期刊文献+

疲劳裂纹扩展规律的正切模型 被引量:1

A Tangential Model for Fatigue Crack Growth Rules
下载PDF
导出
摘要 为了用解析方法合理地描述疲劳裂纹扩展的三个阶段,提出了一种新的疲劳裂纹扩展模型——正切模型。该模型驱动力使用应力强度因子幅值K,能够描述裂纹扩展的三个阶段,且只有四个参数需要确定。通过非线性拟合确定疲劳裂纹扩展正切模型中的四个参数。研究了门槛值Kth和失稳值Kf与应力比R的关系,以及四个参数对裂纹扩展速率的影响。最后比较了试验值、九参数模型和正切模型在疲劳裂纹扩展速率曲线和裂纹扩展长度变化曲线等方面的差别,发现正切模型结果与试验数据较为吻合。该模型描述的裂纹扩展长度变化曲线能够较好地用于疲劳寿命评估。 A new fatigue crack growth model called as tangential model is presented to describe the three phases in fatigue crack growth process,i.e.threshold,stable and unstable phase.The tangential model,in which stress intensity factor ΔK is taken as driving force,has only four parameters to be determined.The parameters can be obtained with a nonlinear fitting approach.Relationships between threshold ΔKth and stress ratio R,and relationship between failure value ΔKf and R are investigated respectively.Sensitivity analysis of fatigue crack propagation rate to the four parameters is carried out.Finally,comparison of crack propagation rate and a-N curve among experimental data,nine parameters model and the tangential model shows that the tangential model agrees well with experimental results.It is concluded that the tangential model can rationally describe the three fatigue crack growth phases and the crack length propagation in fatigue life assessment.
作者 杨鹏 顾学康
出处 《中国造船》 EI CSCD 北大核心 2012年第1期53-61,共9页 Shipbuilding of China
关键词 疲劳裂纹扩展 门槛值 正切模型 非线性拟合 敏感性分析 fatigue crack growth threshold value tangential model nonlinear fitting sensitivity analysis
  • 相关文献

参考文献5

二级参考文献30

  • 1Vasudevan A K, Sadananda K. Application of unified fatigue damage approach to compression-tension region[J]. International Journal of Fatigue, 1999, 21(s1): S263-S273.
  • 2Vasudevan A K, Sadananda K, Glinka G. Critical parameters for fatigue damage[J]. International Journal of Fatigue, 2001, 23: S39-S53.
  • 3Sadananda K, Vasudevan A K. Crack tip driving forces and crack growth representation under fatigue[J]. International Journal of Fatigue, 2004, 26: 39-47.
  • 4Vasudeven A K, Sadananda K, Louat N. A review of crack closure, fatigue crack threshold and related phenomena[J]. Materials Science and Engineering A, 1994, A188: 1-22.
  • 5Sadananda K, Vasudevan A K. Short crack growth and internal stresses[J]. International Journal of Fatigue, 1997, 19:S99-S108.
  • 6Bukkapatnama S T S, Sadananda K. A genetic algorithm for unified approach-based predictive modeling of fatigue crack growth[J]. International Journal of Fatigue, 2005, 27: 1354-1359.
  • 7Cui W C, Bian R G, Liu X C. Application of the two-parameter Unified Approach for Fatigue Life Prediction of Marine Structures[C]//PRADS2007. Houston, USA, 2007: 392-398.
  • 8Paris P C, Tada H, Donald J K. Service load fatigue damage-a historical perspective[J]. International Journal of Fatigue, 1999, 21: S35-S46.
  • 9D S Dugdale, Journal of the Mechanics and Physics of Solids 8 (1960) 100.
  • 10D Kuiawski, International Journal of Fatique 23 (2001) 95.

共引文献37

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部