期刊文献+

MFCAV近似Riemann解在新型拉氏方法中的应用 被引量:3

THE PRACTICAL MFCAV RIEMANN SOLVER IS APPLIED TO A NEW CELL-CENTERED LAGRANGIAN METHOD
下载PDF
导出
摘要 Maire等提出了一种新型的有限体积中心型拉氏方法,该方法大大地改善了一直困扰着一般中心型拉氏方法的虚假网格变形.然而在计算数值流和移动网格时,该方法只应用了数值黏性较大的弱波近似(weak waveapproximated method,WWAM)Riemann解,而且方法的设计表明其他类型的近似Riemann解不能简单直接地应用上去.将体平均多流管(multi fluid channel on averaged volume,MFCAV)近似Riemann解视为对WWAM的修正,成功将其应用于新型方法中,数值实验表明应用了MFCAV的新方法是有效的.研究为将其他更为有效的近似Riemann解应用于该新型方法中开辟了一条道路. Recently, Maire et al. developed a new cell-centered finite-volume Lagrangian method, which greatly eases the problem of spurious grid deformations that have long been troubling cell-centered Lagrangian methods. However, the new method uses only the WWAM approximate Riemann solver in the computation of numerical fluxes, which has much numerical dissipation; moreover, the design of the new method indicates that approximate Riemann solvers in forms other than that of WWAM are not able to be straightforwardly applied to the method. This work successfully applies the MFCAV approximate Riemann solver to Maire et al's method by viewing the MFCAV as a modification of the WWAM. Our numerical tests show that the new method using the MFCAV solver is effective. This study opens a door for applications of Riemann solvers in forms other than that of WWAM to Maire et al's new Lagrangian method.
出处 《力学学报》 EI CSCD 北大核心 2012年第2期259-268,共10页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金资助项目(10901022 10802010 10971132)~~
关键词 中心型拉氏方法 角点速度 弱波近似Riemann解 体平均多流管近似Riemann解 cell-centered Lagrange method, velocity of vertex, WWAM Riemann solver, MFCAV Riemannsolver
  • 相关文献

参考文献10

  • 1Loubere R,Shashkov MJ.A subcell remapping method on staggered polygonal grids for arbitrary Lagrangian-eulerian method.J Comput Phys,2004,23:155-160.
  • 2Duckowicz JK,Meltz B.Vorticity errors in multidimensional Lagrangian codes.Comput Phys,1992,99:115-134.
  • 3Addession FL,Boumgardner JR,Dukowicz JK,et al. CAVEAT:A computer code for fluid dynamics problem with large distortion and internal slip,Los Alamos report LA-10613-MS,1992.
  • 4田保林,申卫东,刘妍,程军波,王双虎.ALE框架下几种不同Godunov型格式的数值比较[J].计算物理,2007,24(5):537-542. 被引量:5
  • 5Tian BL,Shen WD,Jiang S,et al.An arbitrary Lagrangian-Eulerian method based on the apaptive Riemann solver for general equations of state.Int J Numer Meth Fluids,2009,59:1217-1240.
  • 6Maire PH,Abgrall R,Breil J,et al.A cell-centered lagrangian scheme for multidimensional compressible flow problems.SIAM J Sci Comput,2007,29(4):1781-1824.
  • 7Maire PH.A high order cell-centered lagrangian scheme for two dimensional compressible fluid flows on unstructured meshes.J Comput Phys,2009,228:2391-425.
  • 8Toro EF.Riemann Solvers and Numerical Methods for Fluid Dynamics.Heidelberg:Springer-verlag Berlin,2009.
  • 9Woodward P,Colella P.The numerical simulation of two-dimensional fluid flow with strong shocks.J Comput Phys, 1984,54:115 -173.
  • 10Noh WF.Errors for calculations of strong shocks using artifical viscosity and artifical heat flux.J Comput Phys, 1987,72:78-120.

二级参考文献1

共引文献4

同被引文献26

  • 1田保林,申卫东,刘妍,程军波,王双虎.ALE框架下几种不同Godunov型格式的数值比较[J].计算物理,2007,24(5):537-542. 被引量:5
  • 2Maire P H. A high order cell-centered Lagrangian scheme for two dimensional compressible fluid flows on unstruc- tured meshes [J]. J Comput Phys,2009,228(7) :2391-2425.
  • 3Liu Y,Mao D K. Further development of a conservative front-tracking method for system of conservation laws in one space dimension [J]. Journal of Scientific Computing,2006,28(1):85-119.
  • 4Wang C W,Tang H Z,Liu T G. An adaptive ghost fluid finite volume method for compressible gas-water simula- tions [J]. J Comput Phys, 2008,227 (12) : 6385-6409.
  • 5Hirt C W,Amsden A A,Cook J L. An arbitrary Lagrangian-Eulerian computing method for all flow speeds [J]. J Comput Phys, 1974,14(3) : 227-254.
  • 6Benson D J. Momentum advection on a staggered mesh [J]. J Comput Phys, 1992,100 (1): 143-162.
  • 7Loubere R,Shashkov M J. A subcell remapping method on staggered polygonal grids for arbitrary Lagrangian-Eu- lerian method [J]. J Comput Phys,2005,209(1) :105-138.
  • 8Addessio F L,Duckowicz J K. CAVEAT: A computer code for fluid dynamics problems with large distortion and internal slip,LA-10613-MS [R]. New Mexico: Los Alamos National Laboratory,1992.
  • 9Duckowicz J K, Meltz B. Vorticity errors in multidimensional Lagrangian codes [J]. J Comput Phys, 1992,99 (1) : 115-134.
  • 10Maire P H,Breil J,Galera S. A cell-centered arbitrary Lagrangian-Eulerian(ALE) method [J]. Int J Mumer Meth Fluids,2008,56(8) :1161-1166.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部