期刊文献+

二维稳态辐射声场的光滑有限元-完美匹配层解法 被引量:3

A SMOOTHED FINITE ELEMENT-PERFECTLY MATCHED LAYER METHOD FOR TWO-DIMENSIONAL STEADY-STATE RADIATION ACOUSTIC FIELD PROBLEMS
下载PDF
导出
摘要 针对外场声学有限元计算精度偏低的问题,将光滑有限元技术引入到二维稳态辐射声场预测中,提出了光滑有限元-完美匹配层解法.该解法采用完美匹配层截断声场计算域,并将其离散为等参四边形单元,采用指数吸收函数实现完美匹配层内参数坐标和笛卡尔坐标的映射关系,采用光滑声压梯度技术计算辐射声场刚度矩阵,将形函数梯度的域内积分转换为形函数域边界积分.某汽车二维声腔辐射声场的数值分析结果表明,与标准有限元-完美匹配层相比,光滑有限元-完美匹配层解法在完美匹配层内的声波吸收效果更好,在计算域内的数值计算精度更高,具有良好的工程应用前景. Aiming at the problem of low accuracy of finite element method (FEM) for exterior acoustics analysis, the smoothed finite element method-perfectly matched layer (SFEM-PML) method is proposed for the analysis of two-dimensional steady-state acoustic radiation problem. In SFEM-PML, the computational region, truncated by perfectly matched layer(PML), is discreted into four-node isoparametric elements. The mapping relation between the PML's parameter coordinates and Cartesian coordinates is implemented by using the exponential absorbing function. In order to recast the domain integrals involving shape function gradients to the boundary integrals involving only shape functions, the radiant acoustic stiffness matrix is calculated by using the smoothed acoustic pressure gradient matrix. Numerical example of a two-dimensional radiation field of acoustic cavity of automobile is presented, which shows that SFEM-PML achieves better absorbing effect in PML, and higher accuracy in the computational region as compared with FEM-PML. Hence the SFEM- PML can be well applied in solving two dimensional acoustic radiation problems, and has a wide application foreground.
出处 《力学学报》 EI CSCD 北大核心 2012年第2期460-464,共5页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家高技术研究发展计划资助项目(2009AA04Z414)~~
关键词 HELMHOLTZ方程 光滑有限元 完美匹配层 辐射声场 Helmholtz equation, smoothed finite element method, perfectly matched layer, radiation acoustic field
  • 相关文献

参考文献9

  • 1Engquist B,Majda A.Absorbing boundary conditions for thenumerical simulation of waves.Math Comput,1977, 31(139):629-651.
  • 2Givoli D.High-order local non-reflecting boundary conditions: a review.Wave Motion,2004,39(4):319-326.
  • 3Berenger JP.A perfectly matched layer for the absorption of electromagnetic waves.J Comput Phys,1994,114(1): 185-200.
  • 4Hohaga T,Schmidt F,Zschiedrich L.Solving time-harmonic scattering problems based on the pole condition.Ⅱ:Convergence o f the PML method.SIAM J Math Anal, 2004,35(3):547-560.
  • 5Shirron JJ,Giddings TE.A finite element model for acoustic scattering from objects near a fluid-fluid interface. Comput Methods Appl Mech Engrg,2006,196(1-3):279- 288.
  • 6Bermudez A,Hervella-Nieto L,Prieto A,et al.An optimal perfectly matched layer with unbounded absorbing function for time- harmonic acoustic scattering problems.J Comput Phys,2007,223(2):469-488.
  • 7Liu GR,Nguyen TT,Dai KY,et al.Theoretical aspects of the smoothed finite element method(SFEM).Int J Numer Meth Engng,2007,71(8):902-930.
  • 8Yao LY,Yu DJ,Zang XG.Numerical treatment of acoustic problems with the smoothed finite element method.Appl Acoust,2010,71 (8):743-753.
  • 9Rejlek J,Pluymers B,Diwoky F,et al.Validation of the wave based technique for the analysis of 2D steady-state acoustic radiation problems.In:Proceeding of International Conference on Engineering Dynamics Location,Algarve, Portugal,2007.6-18.

同被引文献23

  • 1杨勇,仝哲.减振降噪[J].船舶工程,2023,45(2). 被引量:1
  • 2张春侠,张曼,杨勇强.喷砂及粉尘污染的综合治理[J].电镀与精饰,2007,29(5):38-39. 被引量:1
  • 3Berenger J P. A Perfectly Matched Layer for the Absorption of Electromagnetic Waves[J]. Journal of Computational Physics, 1994, 114: 185-200.
  • 4Hu F Q. On Absorbing Boundary Conditions for Linearized Euler Equations by a Perfectly Matched Layer[J] Journal of Computational Physics, 1996, 129: 201-219.
  • 5Christopher K W T, Laurent A, Prancesco C. Per fectly Matched Layer as an Absorbing Boundary Condition for the Linearized Euler Equations in Open and Ducted Domains[J]. Journal of Compu- tational Physics, 1998, 144: 213-234.
  • 6Hu F Q. A Stable Perfectly Matched Layer for Lin- earized Euler Equations in Unsplit Physical Varia- bles[J]. Journal of Computational Physics, 2001, 173: 455-480.
  • 7Hu F Q. A Perfectly Matched Layer Absorbing Boundary Condition for Linearized Euler Equations with a Non-uniform Mean Flow[J]. Journal of Computational Physics, 2005, 208: 469-492.
  • 8Hu F Q. On the Construction of PML Absorbing Boundary Condition for the Non-linear Euler Equa- tions[C]//44th AIAA Aerospace Science Meeting and Exhibit. New York,2006:AIAA 2006-0798.
  • 9Lin D K, Li X D, Hu F Q. Absorbing Boundary Condition for Nonlinear Euler Equations in Primi- tive Variables Based on the Perfectly Matched Lay- er Technique[J]. Computers :. Fluids, 2011, 40: 333-337.
  • 10Hu F Q, Li X D, Lin D K. Absorbing Boundary Condition for Nonlinear Euler and Navier-Stokes Equations Based on the Perfectly Matched Layer Technique[J]. Journal of Computational Physics, 2008, 227: 4398-4424.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部