期刊文献+

经典数学的逻辑基础 被引量:1

The Logical Basis of Classical Mathematics
原文传递
导出
摘要 经典数学理论的逻辑完全是一阶逻辑还是也需要二阶逻辑?逻辑学家对此一直有争议。这种争议大约开始于20世纪20年代,但是似乎直到现在还未尘埃落定。在普遍接受反基础主义的前提下,数学基础的研究任务不再是为数学的各个分支寻找最大程度上免于理性怀疑的基础,而是在重构数学分支的过程中给出各个数学分支间的关系,描绘出数学的大图景。在这样的背景下, Whether first-order logic is all of logic of classical mathematics or not is controversial.In the spirit of anti-foundationalism,the task of study on foundation of mathematics is not to provide the foundation of mathematics which is immune to rational doubt maximally,but to find the relations of branches of mathematics and try to describe the whole picture of mathematics.In this background,the study of foundation of mathematics cannot exclude the roles of second-order logic.With the premise that there is no sharp border between logic and mathematics,second-order logic is also logic.And the epistemology of second order logic is more natural.
作者 许涤非
出处 《哲学研究》 CSSCI 北大核心 2012年第3期98-104,128,共7页 Philosophical Research
基金 新加坡国立大学数学所(IMS)和约翰.邓普顿基金(John Templeton Foundation)提供的资助 中国人民大学科学研究基金(中央高校基本科研业务费专项资金资助)项目"经典逻辑与非经典逻辑的哲学基础"(编号12XNJ024)的资助
  • 相关文献

参考文献14

  • 1Boolos,G.,1987,“A curious inference”,in Journal of Philosophical Logic16.
  • 2Church,A.,1956,Introduction to Mathematical Logic,Princeton University Press.
  • 3Cocchiarella,N.,1986,“Fege,Russell and logicism”,in L.Haaparanta and J.Hintikka(eds.),Frege Synthesized,Dordrecht:Reidel.
  • 4Detlefsen,M.,2004,“Philosophy of mathematics in the twentieth century”,in S.G.Shanker(ed.),Routledge History of Philosophy,vol.IX,Philosophy of Science,Logic and Mathematics in the Twentieth Century.
  • 5Kreisel,G.,1967,“Informal rigour and completeness proofs”,in I.Lakato(ed.),Problems in the Philosophy of Mathematics,North-Holland,Amsterdam.
  • 6Montague,R.,1965,“Set theory and higher-order logic”,in J.Crossley and M.Dummett(eds.),Formal Systems and Recursive Functions,North-Holland,Amsterdam.
  • 7Moore,G.H.,1988,“The emergence of first-order logic”,in W.Asparay and Ph.Kitcher(eds.),History and Philosophy of Modern Math-ematics,University of Minneapolis Press.
  • 8Quine,W.V.O.,1948,“On what there is”,reprinted in Quine,1980.
  • 9Shapiro,S.,1991,Foundations without Foundationalism(A Case for Second-order Logic),Oxford:Clarendon Press.
  • 10Skolem,T.,1928,“Uber die mathematische logik”,in Norsk Matematisk Ttidsskrift10,tran.in J.van Heijenoort,1967,From Frege toGdel,Harvard University Press.

同被引文献6

  • 1刘杰.理解数学:代数式的进路——访英国利物浦大学哲学系玛丽·兰博士[J].哲学动态,2007(11):36-42. 被引量:1
  • 2Putnam H. Mathematics without Foundations [ J ]. The Jour- nal of Philosophy, 1967,64 ( 1 ) : 5 - 22.
  • 3Hellman G. Three Varieties of Mathematical Structuralism [ J ]. Philosophia Mathematica,2001,9 (3) : 199.
  • 4Hellman G. Mathematics Without Numbers:Towards a Mo- dal-Structural interpretation [ M ]. Clarendon Press, Oxford University Press, Oxford and New York, 1989.
  • 5Cocchiarella N. On the Primary and Secondary Semantics of Logical Necessity [ J ]. Journal of Philosophical Logic, 1975 (4) :13 -27.
  • 6Quine W V O. Philosophy of Logic[ M]. En- glewoods Cliffs, NJ: Prentice-Hall, 1970.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部