摘要
基于一阶初值问题的微分不等式,通过构造所需动力学性质的上下解函数,研究带高阶转向点的一阶非线性奇摄动初值问题鸭轨道的存在性.通过一个典型例子,验证了理论结果的正确性;同时数值积分也证实了该理论结果.
Based on the differential inequalities of first-order initial value problems, by constructing the upper and lower solutions with desired dynamics, deals with the existence of canard orbits in first-order nonlinear singularly perturbed initial value problems with a high- er-order turning point. A typical example is performed to verify the correctness of the theo- retical results. Numerical integrations also demonstrate the theoretical results.
出处
《福建师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2012年第2期21-26,共6页
Journal of Fujian Normal University:Natural Science Edition
基金
国家自然科学基金资助项目(11102041)
中国博士后基金资助项目(2011M500803)
福建省教育厅资助项目(JA10065)
关键词
高阶转向点
奇摄动
一阶初值问题
鸭轨道
higher-order turning point singular perturbation first-order initial valueproblem canard solution