摘要
分别以1,3,5-苯三甲酸(H3BTC)、苯六甲酸(H6MTA)和1,2,3,4,5,6-环己六甲酸(H6CCA)为配体合成了Eu(Ⅲ)的二元发光配合物Eu(BTC)2H2O,Eu2(MTA)4H2O和Eu2(CCA)4H2O.通过元素分析、红外光谱和等离子体原子发射光谱对其化学组成进行了结构表征,表征结果与理论吻合良好.利用荧光分度计,研究了所制备配合物室温条件下的荧光性能(荧光激发光谱、发射光谱、荧光寿命和量子效率),结果表明:该三种配合物在紫外光照射下,均发射Eu(Ⅲ)离子的特征红光,其中Eu2(MTA)4H2O(量子效率=10.25%,荧光寿命=0.36 ms)的荧光性能最好,这说明配体H6MTA的能级与Eu3+离子能级匹配程度很好.另外,通过热分析对配合物的热稳定性进行了分析,结果表明:该三种配合物均具有良好的热稳定性,主要分解温度远高于其他β-二酮配合物.
Using trimesic acid, mellitic acid and 1,2,3,4,5,6-cyclohexanehexacarboxylic acid as ligand, three Eu(III) binary complexes, Eu(BTC).2H20, Eu2(MTA).4H20 and Eu2(CCA)o4H20 were synthesized. Their chemical compositions were characterized by elemental analyses, IR and inductively coupled plasma atomic emission spectrometer (ICP) techniques, and the results showed an agreement with the proposed structures. The photophysical properties (excitation spectra, emission spectra, emission lifetime, emission quantum yield) were investigated by using luminescence spectroscopy at room temperature. The results showed that all the three complexes exhibit strong red fluorescence under ultraviolet light and the photoluminescence properties of EUE(MTA)o4H20 (emission quantum yield= 10.25%, emission lifetime= 0.36 ms) was superior to the others. The phenomenon was interpreted by electron-effect and energy- matching mechanism. Additionally, the thermal stability of the Eu(III) binary complexes was studied, and the main decomposition points of the complexes were higher than other fl-diketonate complexes.
出处
《化学学报》
SCIE
CAS
CSCD
北大核心
2012年第5期679-682,共4页
Acta Chimica Sinica
基金
国家高技术发展基金(No.2011AA8043021)资助项目~~