期刊文献+

三维人脸深度图的流形学习-LOGMAP识别方法 被引量:11

3D facial depth map recognition based on manifold learning-LOGMAP algorithm
下载PDF
导出
摘要 人脸识别是生物特征识别技术最友好的身份识别方式,而三维人脸识别由于可解决二维人脸识别中存在的光照、姿态等局限,成为人脸识别的研究热点,但其特征维数过高是该领域的瓶颈,而维数约减是解决这一问题的关键。流形学习是一类非线性维数约减算法,LOGMAP是一种基于黎曼法坐标的流形学习算法,该算法可以在保持度量信息不变的情况下,把高维空间的数据映射到低维空间。构建了基于流形学习的三维人脸识别框架,并结合LOGMAP进行三维人脸深度图的识别。实验结果表明,该方法在三维深度图上可以得到良好的识别效果。 Face recognition is the no-touch authentication technology in biometrics. 3D face recognition becomes more popular because it can solve the problems of the effect from different illumination and pose in 2D face recognition. However, how to decrease the number of feature dimension is a key technology in 3D facial recognition. In this paper, LOGMAP manifold learning algorithm based on normal coordinates recently is proposed to establish the mapping relationship between the observed and the corresponding low-dimensional data. This paper built a 3D face recognition framework based on manifold learning, and applied LOGMAP theory into 3D facial depth image recognition. The experimental results demonstrate that this method can get good effect for recognition.
出处 《电子测量与仪器学报》 CSCD 2012年第2期138-143,共6页 Journal of Electronic Measurement and Instrumentation
基金 国家自然科学基金(61174170) 教育部博士点基金(2010111110005)资助项目
关键词 三维深度图 人脸识别框架 流形学习 黎曼法坐标 LOGMAP 3D facial depth map face recognition framework manifold learning Riemannian normal coordinates LOGMAP
  • 相关文献

参考文献14

  • 1叶长明,蒋建国,詹曙,Shigeru Ando.基于三维人脸成像系统的复数域人脸识别方法[J].电子测量与仪器学报,2011,25(5):420-426. 被引量:12
  • 2JOLLIFFE I T.Principal component analysis[M].Springer,1989.
  • 3COX T,COX M.Multidimensional scanning[M].Chap-man and Hall,1994.
  • 4TENENBAUM J,DE SILVA V,LANGFORD J.A globalgeometric framework for nonlinear dimensionality re-duction[J].Science,2000:290:2319-2323.
  • 5LAW M H,JAIN A K.Incremental nonlinear dimension-ality reduction by manifold learning[J].IEEE Trans.onPattern Analysis and Machine Intelligence,2006,28(3):377-391.
  • 6ROWEIS1 S T,SAUL L K.Nonlinear dimensionalityreduction by locally linear embedding[J].Science,2000,290(5500):2323-2326.
  • 7徐雪松,张宏,刘凤玉.基于核函数距离测度的LLE降维及其在离群聚类中的应用[J].仪器仪表学报,2008,29(9):1996-2000. 被引量:5
  • 8BELKIN M,NIYOGI P.Laplacian eigenmaps for di-mensionality reduction and data representation[J].Neu-ral Computation,2003,15(6):1373-1396.
  • 9ZHANG ZH Y,Zha Hongyuan.Principal manifolds andnon linear dimensionality reduction via tangent S pacealignment[J].SIAM Journal of Scientific Computing,2004,26(1):313-338.
  • 10BRUN A,WESTIN C F,HERBERTHSON M,et al.FastManifold learning based on riemannian normal coordi-nates[C].Proc.of 14th Scandinavian Conon ImageAnalysis,2005:921-929.

二级参考文献43

  • 1邓星亮,吴清.LLE算法及其应用[J].兵工自动化,2005,24(3):65-66. 被引量:8
  • 2陈高曙,曾庆宁.Eigenface和Fisherface用于人脸识别的性能比较[J].中国科技信息,2006(9):199-201. 被引量:4
  • 3张东波,王耀南.FCM聚类算法和粗糙集在医疗图像分割中的应用[J].仪器仪表学报,2006,27(12):1683-1687. 被引量:32
  • 4朱树先,张仁杰.BP和RBF神经网络在人脸识别中的比较[J].仪器仪表学报,2007,28(2):375-379. 被引量:30
  • 5TURK M, PENTLAND A. Eigenfaces for recognition [J]. Journal of Cognitive Neuroscience, 1991,3 ( 1 ) : 71-86.
  • 6BELHUMEUR P, HESPANHA J, KRIEGMAN D. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19 (7) : 711-720.
  • 7CHEN L F, LIAO M T, YU G J. A new LDA-based face recognition system which can solve the small sample size problem [ J ]. Pattern Recognition, 2000, 33 ( 1 ) : 1713-1726.
  • 8YANG J, ZHANG D, FRANGI A F, et al. Two-dimensional PCA: a new approach to appearance-based face representation and recognition[ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004,26( 1 ) : 131-137.
  • 9YANG J, ZHANG D, XU Y, et al. Two-dimensional discriminant transform for face recognition [ J ]. Pattern Recognition, 2005,38 : 1121-1124.
  • 10LI H, JIANG T, ZHANG K. Efficient and robust feature extraction by maximum margin criterion[ J]. IEEE Transactions on Neural Networks, 2006,17 ( 1 ) : 1157-1165.

共引文献28

同被引文献149

引证文献11

二级引证文献100

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部