期刊文献+

椭球的Orlicz质心体(英文) 被引量:1

Orlicz centroid bodies of ellipsoids
下载PDF
导出
摘要 主要研究了Lutwak等所引入的Orlicz质心体(Lutwak E,Yang D,Zhang G.Orliczcentroid bodies.J.Differential Geom.,2010,84:365-387).利用Orlicz质心体在线性变换下的不变性,证明了椭球的Orlicz质心体仍是椭球.作为例子,计算了当取两个特定的凸函数时单位球的Orlicz质心体的支持函数. This paper studies the Orlicz centroid bodies introduced by Lutwak, et al. (Lutwak E, Yang D, Zhang G. Orlicz centroid bodies. J. Differential Geom., 2010, 84: 365-387). By using the linear invariant property of the Orlicz centroid bodies, the fact that the Orlicz centroid bodies of ellipsoids are still ellipsoids is demonstrated. As examples, two concrete support flmctions of the Orlicz centroid bodies of the unit ball for specific convex functions are computed.
作者 熊革 徐治华
机构地区 上海大学理学院
出处 《应用数学与计算数学学报》 2012年第1期94-101,共8页 Communication on Applied Mathematics and Computation
基金 Project supported by the National Natural Science Foundation of China(11001163) the Innovation Program of Shanghai Municipal Education Commission(11YZ11) the Shanghai Leading Academic Discipline Project(J50101)
关键词 凸体 支持函数 质心体 Orlicz质心体 convex body support function centroid body Orlicz centroid body
  • 相关文献

参考文献12

  • 1Lutwak E,Yang D,Zhang G.Orlicz centroid bodies[J].J.Differential Geom.,2010,84: 365-387.
  • 2Lutwak E,Yang D,Zhang G.Orlicz projection bodies[J].Adv.Math.,2010,223:220-242.
  • 3Lutwak E.The Brunn-Minkowski-Firey theory.I.Mixed volumes and the Minkowski problem [J].J.Differential Geom.,1993,38:131-150.
  • 4Lutwak E.The Brunn-Minkowski-Firey theory.Ⅱ.Affine and geominimal surface areas[J]. Adv.Math.,1996,118:244-294.
  • 5Petty C M.Centroid surfaces[J].Pacific J.Math.,1961,11:1535-1547.
  • 6Lutwak E,Yang D,Zhang G.Lp affine isoperimetric inequalities[J].J.Differential Geom., 2000,56:111-132.
  • 7Campi S,Gronchi P.The Lp-Busemann-Petty centroid inequality[J].Adv.Math.,2002,167: 128-141.
  • 8Campi S,Gronchi P.On the reverse Lp-Busemann-Petty centroid inequality[J].Mathamatika, 2002,49:1-11.
  • 9Fleury B,Guedon O,Paouris G.A stability result for mean width of Lp-centroid bodies[J]. Adv.Math.,2007,214:865-877.
  • 10Lutwak E,Yang D,Zhang G.Lp John ellipsoids[J].Proc.Lond.Math.Soc.,2005,90: 497-520.

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部