期刊文献+

Halin图的集染色

The Set Coloring of Halin Graphs
下载PDF
导出
摘要 对于非平凡连通图G,G的k集染色是指映射c:V(G)→Nk,对任意顶点v∈V(G),定义邻色集cN(v)={c(u)|u∈N(v)},若对uv∈E(G)有cN(u)≠cN(v),则称c为G的一个k集染色.满足上述条件的最小k值称为G的集色数,记为χs(G).为了更快更有效地给Halin图着色,采用集染色的着色方法,证明了当p≥4时,Halin图G(Cp,Tq)的集色数是3,并且还证明了对任意的Halin图G(Cp,Tq),有p+1≤q≤2p-2成立. For a non - trivial connected graph G, let c: V(G)---+Nk be a vertex coloring of G where adjacent vertices may be col- ored the same. For a vertex v of G , the neighborhood color set cN(v) is the set of colors of the neighbors ofv. The coloring c is called a k set coloring if cN(u) #cN(v) for every pair u, v of adjacent vertices of G. The minimum number of colors required of such a coloring is called the set chromatic number,x, (G) of G. It is proved that the set chromatic number of the Halin graph G( Co, Tq ) with p 34 is 3, and that for any a Halin graph G( Co, T ), there exists p + 1 q 〈2p - 2.
出处 《四川文理学院学报》 2012年第2期17-20,共4页 Sichuan University of Arts and Science Journal
基金 中央高校基本科研业务费专项基金(2010LKSX06)
关键词 集染色 集色数 完全图 HALIN图 set coloring the set chromatic number complete graph Halin graph
  • 相关文献

参考文献9

二级参考文献34

  • 1谢德政.关于几乎正则2-连通图的Hamilton性的注记[J].西南师范大学学报(自然科学版),2004,29(4):570-572. 被引量:4
  • 2张忠辅,韩金仓,刘林忠.关于Halin图的完备色数[J].兰州铁道学院学报,1994,13(1):84-88. 被引量:2
  • 3娄定俊.Halin图中的Hamilton路径[J].应用数学,1995,8(2):158-160. 被引量:5
  • 4张建勋,王宁生,张忠辅,吕新忠,王建方.Halin图的边面全色数[J].科学通报,1996,41(21):2010-2010. 被引量:2
  • 5吕新忠 张忠辅.内点度不小于4最大度为6的Halin图的边面全色数[J].纯数学与应用数学,1993,(2):88-91.
  • 6FERTIN G, RASPAUD A, REED B. Star coloring of graphs [J]. Journal of Graph Theory, 2004, 47 (3) :163 - 182.
  • 7ALON N, MOHAR B. The chromatic number of graph powers [J]. Combinatorics, Probability and Computing, 2002 (11):1 - 10.
  • 8SHIU W C, TAM W K. The strong chromatic index of complete cubic Halin graphs[J]. Applied Mathematics letters,2009,22: 754 - 758.
  • 9HALIN R. Studies on minimally n-connected graphs [J]. Combinatorial Mathematics and its Applications, Academic Press, London, 1971, 129--136.
  • 10CORNUEJOLS G, NADDEF D, PULLEYBLANK W R. Halin grapha and the travelling salesman problem [J]. Mathematical Programming, 1983, 26: 287--294.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部