期刊文献+

积分二阶线性非完整力学系统的最终乘子方法 被引量:1

An integration method of a mechanical system with second order linear non-holonomic constraints
下载PDF
导出
摘要 研究二阶线性非完整力学系统的积分方法。建立了相空间中二阶线性非完整力学系统的运动微分方程,给出了系统的Jacobi最终乘子的定义,研究了系统的第一积分与Jacobi最终乘子的关系。研究表明:由n个广义坐标确定的受有g个二阶非完整约束的力学系统,如果已知系统(2n-1)个第一积分,则可利用Jacobi最终乘子给出系统的解。文末举例说明结果的应用。 A new integration method of a mechanical system with second order linear non-holonomic constraints is put forward. The differential equations of motion of the mechanical system with second order linear non-holo- nomic constraints in phase space are established. The Jacobi Last Multiplier of the system is defined and the re- lation between the Jacobi Last Multiplier and the first integrals of the system is discussed. The study shows that for a mechanical system with g second order linear non-holonomic constraints, whose configuration is determined by n generalized coordinates, the solution of the system can be found by the Jaeobi Last Multiplier if (2n-l) first integrals of the system are known. An example is given to illustrate the application of the results.
作者 张毅
出处 《苏州科技学院学报(自然科学版)》 CAS 2012年第1期7-12,共6页 Journal of Suzhou University of Science and Technology (Natural Science Edition)
基金 国家自然科学基金资助项目(10972151)
关键词 二阶非完整系统 运动微分方程 积分方法 Jacobi最终乘子 second order non-holonomic system differential equations of motion integration method Jacobi LastMultiplier
  • 相关文献

参考文献14

  • 1Whittaker E T.A Treatise on the Analytical Dynamics of Particles and Rigid Bodies(Fourth Edition)[M].Cambridge:Cambridge University Press,1952.
  • 2梅凤翔 刘端 罗勇.高等分析力学[M].北京:北京理工大学出版社,1991..
  • 3梅凤翔,吴惠彬,朱海平<Author>MEI Fengxiang WU Huibin and ZHU Haiping(Department of Applied Mechanics,Beijing Institute of Technology. Beijing 100081,China).Integrating the equations of motion of a nonholonomic system by quadratures[J].Chinese Science Bulletin,1995,40(17):1424-1428. 被引量:1
  • 4罗绍凯.非线性非完整系统Vacco动力学方程的积分方法[J].应用数学和力学,1995,16(11):981-989. 被引量:7
  • 5陈向炜,罗绍凯.变质量非线性非完整系统相对运动动力学方程的积分方法[J].应用数学和力学,1998,19(5):447-455. 被引量:5
  • 6Mei F X.On the integration methods of non-holonomic dynamics[J].International Journal of Non-Linear Mechanics,2000,35(2):229-238.
  • 7Guo Y X,Shang M,Luo S K,Mei F X.Poincaré-Cartan integral variants and invariants of nonholonomic constrained systems[J].InternationalJournal of Theoretical Physics,2001,40(6):1197-1205.
  • 8Zhang H B,Chen L Q.Connection of first integrals with particular solution of the nonsimultaneous variational equations for nonholonomicsystems[J].Mechanics Research Communications,2005,32(6):628-635.
  • 9Mei F X,Wu H B.Symmetry of Lagrangians of nonholonomic systems[J].Physics Letters A,2008,372:2141-2147.
  • 10Fu J L,Chen L Q,Chen B Y.Noether symmetries of discrete nonholonomic dynamical systems[J].Physics Letters A,2009,373:409-412.

二级参考文献61

  • 1Pauli W 1953 Nuovo Cimento 10 648
  • 2Martin J L 1959 Proc. Roy. Soc. London A 251 536
  • 3Liu D, Mei F X and Chen B 1992 Applications of Modern Mathematical Theory and Method to Dynamics, Vibration and Control (Beijing: Science Press)
  • 4Li J B, Zhao X H and Liu Z R 1994 Theory and Application of Generalized Hamilton System (Beijing: Science Press)
  • 5Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press)
  • 6Chen X W, Shang M and Mei F X 2001 Chin. Phys. 10 997
  • 7Wang S Y and Mei F X 2002 Chin. Phys. 11 5
  • 8Luo S K, Chen X W and Guo Y X 2002 Chin. Phys. 11 523
  • 9Qiao Y F, Zhang Y L and Han G C 2002 Chin. Phys. 11 988
  • 10Wu H B 2004 Chin. Phys. 13 589

共引文献77

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部