期刊文献+

多切面分类改进独立成份与支持向量机集成故障诊断方法 被引量:5

Multi-section classification improving integrated fault diagnosis method based on independent component analysis and support-vector-machines
下载PDF
导出
摘要 本文采用多切面分类方法改进独立成份(ICA)与支持向量机(SVM)集成诊断方法.在高维独立成份特征空间中采用多切面分类方法在不同切面上分别建立SVM故障分类模型.对不同切面的分类情况进行故障识别,改善ICA--SVM集成故障诊断性能.将ICA--MSVM集成故障诊断方法对动态执行器基准平台(DAMADICS)的19种阀门故障模式进行仿真验证,结果表明改进的ICA--MSVM方法有效地提高了故障诊断精度. The integrated diagnosis method of independent component analysis (ICA) and supportvectormachines (SVM) is improved by multisection classification. Fault classification model of SVM is designed for each section in the high dimensional characteristic space. By diagnosing the fault type in different section, we improve the ICASVM fault diagnosis performance. This method has been applied to diagnose 19 types of valve failures on the dynamic actuator refer ence platform (DAMADICS). Simulation results show that the ICAMSVM fault diagnosis method based on multisection classification effectively improves the accuracy of fault diagnosis.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2012年第2期229-234,共6页 Control Theory & Applications
基金 国家自然科学基金资助项目(60804027) 江苏省自然科学基金资助项目(BK2011795) 中国博士后科学基金资助项目(20100471325) 江苏省博士后科学基金资助项目(0901011B)
关键词 多切面分类 独立成分分析 支持向量机 故障辨识 执行器基准平台 multisession classification independent component analysis (ICA) supportvectormachine (SVM) faultdiagnosis actuator reference platform (DAMADICS)
  • 相关文献

参考文献12

二级参考文献56

共引文献300

同被引文献91

  • 1邓晓刚,田学民.基于免疫核主元分析的故障诊断方法[J].清华大学学报(自然科学版),2008,48(S2):1794-1798. 被引量:5
  • 2胡昌华,蔡艳宁,张琪.基于多重回归LSSVM的并发故障诊断[J].华中科技大学学报(自然科学版),2009,37(S1):1-5. 被引量:6
  • 3刘开第,曹庆奎,庞彦军.基于未确知集合的故障诊断方法[J].自动化学报,2004,30(5):747-756. 被引量:59
  • 4范玉刚,李平,宋执环.基于特征样本的KPCA在故障诊断中的应用[J].控制与决策,2005,20(12):1415-1418. 被引量:20
  • 5GAO Guo-hua,ZHANG Yong-zhong,ZHU Yu,DUAN Guang-huang.Hybrid Support Vector Machines-Based Multi-fault Classification[J].Journal of China University of Mining and Technology,2007,17(2):246-250. 被引量:11
  • 6SIMOGLOU A, GEORGIECA P, MARTIN E B, et al. On-line mo- nitoring of a sugar crystallization process [ J]. Computers and Chem- ical Engineering, 2005, 29(6) : 1411 - 1422.
  • 7RUMANA S, SIRISH L S, UTYANDARAMAN S. A PCA based fault detection scheme for an industrial high pressure polyethylene reactor [ J]. Macromolecular Reaction Engineering, 2008, 2(1) : 12 -30.
  • 8LIU X Q, XIE L, KRUGER U, et al. Statistical-based monitoring of multivariate non-Gaussian systems [ J]. AIChE Journal, 2008, 54 (9): 2379 -2391.
  • 9LEE J-M, YO0 C K, LEE I-B. Statistical process monitoring with independent component analysis [ J]. Journal of Process Control, 2004, 14(5): 467-485.
  • 10GE Z Q, SONG Z H. Process monitoring based on Independent Component Analysis-Principal Component Analysis (ICA-PCA) and similarity factors [ J]. Industrial and Engineering Chemistry Re- search, 2007, 46(7): 2054-2063.

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部