期刊文献+

基于运动增强和颜色分布比对的运动目标检测

Moving object detection using motion enhancement and color distribution comparison
下载PDF
导出
摘要 为检测无人机视频中的地面运动目标,提出了一种运动和颜色信息相结合的算法.采用前向运动历史图像来增强独立运动信息和抑制背景噪声,确保完整分割出候选运动区域;提出一种迭代的、基于局部颜色分布比对的方法,去除候选区域中的背景像素,以更准确地提取单个运动目标.算法不仅节约了计算量,还有效降低了误检和漏检的可能性.多组无人机视频的实验结果表明了所提算法的高效性和鲁棒性. To detect moving objects from videos taken by unmanned aerial vehicles, an approach using motion .and color cues was proposed. It adopted the forward motion history image to enhance the independent moving information and suppress the noises in background areas, enabling the candidate moving regions to be extracted entirely. Then, an iterative local color distribution comparison based the method was developed to remove the background pixels contained by each candidate region, insuring each moving object to be extracted precisely. Thus, the cost of computation is saved, and the miss rate and false alarm rate can be cut down prominently. Experimental results with several aerial videos demonstrate the performance and the robustness of the proposed method.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2012年第2期263-267,272,共6页 Journal of Beijing University of Aeronautics and Astronautics
关键词 航空视频分析 运动目标检测 前向运动历史图像 局部颜色分布比对 aerial video analysis moving object detection forward motion history image local colordistribution comparison
  • 相关文献

参考文献12

  • 1Burr P J, Bergen J R, Hingorani R, et al. Object tracking with a moving camera [ C ]//Nassau. Proceedings of the ]EEE Work- shop on Visual Motion. New Jersey: IEEE Computer Society Press,1991:2 - 12.
  • 2Kumar R,Sawhney H, Samarasekera S, et al. Aerial video surveillance and exploitation [ J ]. IEEE Proceddings, 2001, 89(10) :1518 - 1539.
  • 3All S,Shah M. Cocoa: tracking in aerial imagery[ C]//Daniel J Henry. Airborne Intelligence, Surveillance, R (ISR) Systems and Applications III. Bellingham:SPIE the International Society for Optical Engineering,2006.
  • 4Zhao Zhengyin, Collins R. Moving object localization in thermal imagery by forwardbackward MHI [ C ]//Schmid C. IEEE Com- puter Society Conference on Computer Vision and Pattern Recognition Workshop. New York: IEEE Computer Society Press, 2006 : 133 - 140.
  • 5Veit T, Cao F, Bouthemy P. An a contrafio decision framework for region-based motion dctcction[J]. International Journal of Computer Vision,2006,68 (2) : 163 - 178.
  • 6Yao F H, Sekmen A, Malkani M. A novel method for realtimemultiple moving targets detection from moving IB camera [ C ]// 19th International Conference on Pattern Recognition. Florida: IEEE Computer Society Press,2008 : 1 - 4.
  • 7Zitova B, Flusser J. Image registration methods : a survey [J].Image and Vision Computing,2003,21 ( 11 ) :977 - 1000.
  • 8Benedek C, Sziranyi T, Kato Z, et al. Detection of object motion regions in aerial Image pairs with a muhilayer markovian model[J]. IEEE Transactions on Image Processing, 2009,18 (10) : 2303 - 2315.
  • 9Canny J. A computational approach to edge detection [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986,8 (6) :679 - 698.
  • 10ProcerusTM Technologies. UAV convoy following[ EB/OL] ht- tp ://procerusuav. corn/gallery, php.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部