期刊文献+

基于连续数据流的动态手势识别算法 被引量:7

Algorithm based on continuous data stream for dynamic gesture recognition
下载PDF
导出
摘要 为识别用户做出的动态手势序列,基于数据手套采集的连续数据流,运用奇异值分解消除数据噪点,提取手势的特征信息,并利用关节弯曲的生理学特性与用户解耦合,将各种动作片段抽象成用户无关的手势模板,从而唯一定义手势特征并屏蔽不同用户的手势差异,再基于Hill Climbing思想把连续数据流分割成有序的动作序列,并按时序对所有片段在预先构造的层次树上实时搜索,根据欧式距离度量序列与手势模板的相似性.该算法对手势序列的分割准确,对多用户具有良好的适应性,其有效性在使用5DT数据手套搭建的两组动态手势识别的实验中得以验证. For the purpose of recognizing the sequence of dynamic gesture made by operator, a method was presented based on continuous data streams sampled from data glove, which used singular value decompo- sition (SVD) to eliminating noise and extracting features. The characteristics of physiology about joint bend was applied making user-dependent information be culled. A set of gesture template which across different us- ers was set up. The template which gives a complete description of gesture' s feature and generalizes it is therefore user-independent. Based on Hill Climbing heuristic, these streams were separated into action se- quences, then a similarity measurement using Euclidian distance was adopted in real time between all seg- ments and templates on a hierarchy search tree built in advance. The sequences segmented by this method are accuracy and suitable for multi users. The effectiveness of this approach for identifying dynamic'gesture was verified by two empirical experiments which using 5 DT data glove.
作者 郑韡 沈旭昆
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2012年第2期273-279,共7页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家高科技研究发展计划重点资助项目(2009AA012103)
关键词 连续数据流 奇异值分解 动态手势识别 continuous data stream singular value decomposition(SVD) dynamic gesture recognition
  • 相关文献

参考文献14

  • 1Agrawal R, Faloutsos C, Swami A. Efficient similarity search in sequence databases[ C ]//FODO 1993 Proceedings of the 4th Ino temational Conference on Foundations of Data Organization and Algorithms. London : Springer-Verlag, 1993:69 - 84.
  • 2Babu S, Widom J. Continuous queries over data streams[ J ]. ACM SIGMOD Record ,2001,30 (3) : 109 - 120.
  • 3Gehrke J,Korn F,Srivastava D. On computing correlated aggregates over continuous data streams [ C ]//2001 ACM SIGMOD International Conference on Management of Data. NY: Associa tion for Computing Machinery,2001.
  • 4Mitra S. Gesture recognition :a survey [ J ]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2007,37 ( 3 ) :311 - 324.
  • 5Emran S M, Ye N. Robustness of canberra metric in computer intrusion detection[ C]//Proceedings of the 2001 IEEE Workshopon Information Assurance and Security. NY: United States Militally Academy, West Point,2001.
  • 6Chan Kinpong,Waichee Fo A. Efficient time series matching by wavelets [ C ]//Proeeedings-lntemational Conference on Data Engineering. Los Alamitos, CA:Institute of Electrical and Electronies Engineers Computer Society, 1999 : 126 - 133.
  • 7Ju Zhaojie, Liu Honghai, Zhu Xiangyang, et al. Dynamic grasp recognition using time clustering, gaussian mixture models and bidden markov models [ C ]//Intelligent Robotics and Applica- tions-First International Conference, ICIRA 2008, Proceedings. Heidelberg: Springer-Verlag,2008,23 (10) :669 -678.
  • 8Bedregal B C ,Costa A C R,Dimuro G P. Fuzzy rule-based hand gesture recognition, artificial intelligence in theory and practice [ C ]//IFIP International Federation for Information Processing. Boston, MA : World Computer Congress ,2006,217:285 - 294.
  • 9Vamplew P,Adams A. Recognition and anticipation of hand motions using a recurrent neural network [ C ]//IEEE International Conference on Neural Networks. Piscataway, NJ : IEEE, 1995,6 : 2904 - 2907.
  • 10Zollner R, Rogalla O, Dillmann R, et al. Dynamic grasp recogni- tion within the framework of programming by demonstration [ C ]//Robot and Human Communication-Proceedings of the IEEE International Workshop. Piscataway, NJ: IEEE, 2001: 418 -423.

同被引文献82

引证文献7

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部