摘要
一个社会网络中通常包括具有正面影响和负面影响的两类人员,为了研究这个社会网络中人们之间相互影响的某些规律,引入了一个新的概念.用划分图G=(V,E),V=V+∪V^-表示这样的一个社会网络,其中V^+和V^-分别表示正面人员的集合和负面人员的集合.图G的一个点子集D(?)V^-被称为G的一个正影响集,若G的每个点的至少一半的邻点在D∪V^+中.G的所有正影响集的最小基数称为G的正影响数.给出G的正影响数的几个下界并证明了这些界是紧的.此外,还证明了求正影响数问题在二部图和弦图上都是NP-完全的.
In this paper,a concept is introduced in order to model a class of problems in social networks.A social network consisting of positive and negative influential individuals is represented as a partitioned graph G =(V,E) with vertex set partition V =V+ ∪ V-.A subset D (∈) V- is called a positive influencing set if every vertex of G has in D ∪ V+ at least half of its neighbors.The positive influencing number of G is the minimum cardinality of a positive influencing set.In the present paper,we show some sharp lower bounds for this parameter,and prove that this problem is NP-complete for partitioned bipartite graphs and partitioned chordal graphs,respectively.
出处
《运筹学学报》
CSCD
北大核心
2012年第1期41-48,共8页
Operations Research Transactions
基金
supported by the foundation from Department of Education of Zhejiang Province (NoY201018696)
关键词
全控制
符号全控制
正影响数
社会网络
total domination, signed total domination, positive influencing number, social networks