摘要
针对传统颜色迁移算法计算量大、对图像无法准确进行颜色迁移的问题,提出一种基于形态学变换和快速模糊C均值聚类(FFCM)的灰度图像颜色迁移算法。首先对目标图像进行腐蚀膨胀运算,消除亮度不均匀的区域,通过FFCM聚类算法对目标图像进行准确聚类,然后在目标图像与源图像中选取对应样本块,完成样本块的颜色迁移,并以已上色的样本块为参考,完成图像的全局颜色迁移。实验结果表明:与Welsh和FCM算法相比较,本文算法处理时间分别缩短64.29%和54.25%,结果图像在类间交界处的颜色过渡更加自然,证明了算法的有效性。
To deal with the problem that the traditional color transfer algorithms can not trans- fer the image colour accurately and have large amount calculation, we proposed a colour trans- fer algorithm for colorizing grayscale images based on morphology transformation and fast fuzz- y C-means (FFCM) cluster. We used morphology transformation to process the target image for removing the non-uniform luminance region first, and adopted the FFCM algorithm to clus- ter the target image accurately. Then we established the correspondence between the swatches of source and target images to complete the color transfer of swatches which were as the refer- ences to complete the target image's colorization. The experimental results showed that, com- pared with Welsh and fuzzy C-means (FCM), the elapsed time decreased by 64. 2~ and 54.25~ respectively and the result image was more natural in clusters' junction which proved the validity of our algorithm proposed.
出处
《应用光学》
CAS
CSCD
北大核心
2012年第2期300-304,共5页
Journal of Applied Optics
基金
国家自然科学基金项目(61171057)
山西省自然科学基金项目(2011011015-1)
电子测试技术国家重点实验室项目(201003)
山西省研究生创新项目(20103082)
光电成像技术与系统教育部重点实验室2010年开放基金(2010OEIOF16)
关键词
形态学变换
FFCM聚类
颜色迁移
图像处理
morphology transformation
FFCM cluster
color transfer
image processing