期刊文献+

应用新的基于知识编码方法及双层SVM识别人类PolⅡ启动子 被引量:2

Applying novel knowledge-based encoding methods and dual SVM to human Pol Ⅱ promoter recognition
下载PDF
导出
摘要 目的优选对人类RNA聚合酶(Pol)Ⅱ启动子数据识别分类并提高识别准确率的方法。方法采用基于知识的统计编码方法、CpG编码、五联体(Pentamers)编码、模式字典(Pattern Dictionary)编码,最后建立共识模型,使用支持向量机(SVM)方法对启动子数据进行分类。结果启动子数据编码后在SVM中识别,与其他利用SVM工具相比,得到了较高的识别准确率、特异性及灵敏度。将新编码方法应用到人类22号染色体启动子数据的识别中,其中模式字典编码识别准确率达到了90.98%。结论共识模型考虑了各子模型的独立性和模型之间的差异性,发挥了各模型之间的互补优势,从而提高了最终的识别准确率。 Objective To recognize human PolⅡpromoter, and select a better coding method with highly promoted recognition precision. Methods Novel encoding methods were applied to encoding of the human promoter sequences, including statistical code, CpG code, Pentamers code, and Pattern Dictionary code, fight consensus models were built up, and the promoter se- quences with the Support Vector Machine (SVM) were recognized. Results The recognition accuracy, sensitivities and specificities had precedence. The accuracy of the human chromo- some 22 promoter recognition reached 90.98%. Conclusion The consensus models include the independence and difference of each sub-models, and exert the superiorities and the com- plementarities of the sub-models.
作者 智慧 李通化
出处 《哈尔滨医科大学学报》 CAS 北大核心 2012年第1期23-26,共4页 Journal of Harbin Medical University
关键词 启动子识别 支持向量机 共识模型 双层SVM 生物统计学 promoter recognition SVM consensus model dual SVM biostatistics
  • 相关文献

参考文献1

二级参考文献1

  • 1M. J. D. Powell.Restart procedures for the conjugate gradient method[J].Mathematical Programming.1977(1)

同被引文献37

  • 1BAJIC V B, CHONG A, SEAH S H, et al. An intelligent system for vertebrate promoter recognition [ J]. IEEE Intelligent Systems, 2002, 17(4): 64-70.
  • 2FICKETT J W, HATZIGEORGIOU A G. Eukaryotic promoter rec- ognition [J]. Genome Research, 1997, 11(5): 861-878.
  • 3UMESH P, DUBEY J K, KARTHIKA R V, et al. A novel sequence and context based method for promoter recognition [ J]. Bioinforma- tion, 2014, 10(4) : 175 - 179.
  • 4ZENG J, ZHAO X, CAO X, et al. SCS: signal, context, and structure features for genome-wide human promoter recognition [ J]. IEEE/ACM Transactions on Computational Biology and Bioinformat- ics, 2010, 7(3): 550-562.
  • 5DENG J, LIANG H, ZHANG R, et al. Methylated CpG site count of dapper homolog 1 (DACT1) promoter prediction the poor survival of gastric cancer [ J]. American Journal of Cancer Research, 2014, 4(5) : 518 -527.
  • 6HUANG W L, TUNG C W, LIAW C, et al. Rule-based knowledge acquisition method for promoter prediction in human and Drosophila species [ J]. Scientific World Journal, 2014, 2014(2014) : 1 - 14.
  • 7FUJII S, KONO H, TAKENAKA S, et al. Sequence-dependent DNA deformability studied using molecular dynamics simulations [ J]. Nucleic Acids Research, 2007, 35(18): 6063-6074.
  • 8GAN Y, GUAN J, ZHOU S. A comparison study on feature selec- tion of DNA structural properties for promoter prediction [ J]. BMC Bioinformatics, 2012, 13:4.
  • 9ANWAR F, BAKER S M, JABID T, et al. Pol II promoter predic- tion using characteristic 4-mer motifs: a machine learning approach [J]. BMC Bioinformatics, 2008, 9(1):414-418.
  • 10WU J, XIE J. Hidden Markov model and its applications in motif findings [ M]// Statistical Methods in Molecular Biology. New York: Humana Press, 2010:405-416.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部