期刊文献+

Vibrational relaxation dynamics in transient grating spectroscopy studied by rate equations based on time-dependent correlation function

Vibrational relaxation dynamics in transient grating spectroscopy studied by rate equations based on time-dependent correlation function
下载PDF
导出
摘要 A modified model, a set of rate equations based on time-dependent correlation function, is used to study vibrational relaxation dynamics in transient grating spectroscopy. The dephasing, the population dynamics, and the vibrational coherence concerning two vibrational states are observed respectively in organic dye IR780 perchlorate molecules doped polyvinyl alcohol matrix. The result shows that in addition to the information concerning system-environment interaction and vibrational coherence, the vibrational energy transfer can be described by this modified model. A modified model, a set of rate equations based on time-dependent correlation function, is used to study vibrational relaxation dynamics in transient grating spectroscopy. The dephasing, the population dynamics, and the vibrational coherence concerning two vibrational states are observed respectively in organic dye IR780 perchlorate molecules doped polyvinyl alcohol matrix. The result shows that in addition to the information concerning system-environment interaction and vibrational coherence, the vibrational energy transfer can be described by this modified model.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第4期245-248,共4页 中国物理B(英文版)
基金 supported by the Defense Industrial Technology Development Program of China (Grant No. B1520110002) the PreResearch Foundation of PLA General Armament Department, China (Grant No. 9104C6709101106) the National Natural Science Foundation of China (Grant Nos. 20973050 and 20573028)
关键词 transient grating population dynamics vibrational energy transfer transient grating, population dynamics, vibrational energy transfer
  • 相关文献

参考文献24

  • 1Kukura P, McCamant D W, Yoon S, Wandschneider D B and Mathies R A 2005 Science 310 1006.
  • 2Kobayashi T, Saito T and Ohtani H 2001 Nature 414 531.
  • 3Blatchford J W, Jessen S W, Lin L B, Gustafson T L, 1l D K, Wang H L, Swager T M, MacDiarmid A G and Epstein A 1996 Phys. Rev. B 54 9180.
  • 4Chiu J J, Wang W S, Kei C C, Cho C P, Perng T P, Wei P K and Chiu S Y 2003 Appl. Phys. Lett. 83 4607.
  • 5Markel F, Ferris N S, Gould I R and Myers A B 1992 J. Am. Chem. Soc. 114 6208.
  • 6Bredenbeck J, Helbing J and Hamm P 2004 J. Am. Chem. Soc. 126 990.
  • 7Wang Z H, Pakoulev A and Dlott D D 2002 Science 296 2201.
  • 8I Owrutsky J C, Raftery D and Hochstrasser M R 1994 Ann. Rev. Phys. Chem. 45 519.
  • 9Kozich V, Werncke W, Dreyer J Brzezinka K W, Rini M, Kummrow A and Elsaesser T 2002 J. Chem. Phys. 117 719.
  • 10Smith I W M and Warr J F 1990 J. Chem. Soc. Faraday Trans. 86 3983.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部